Radiomic Features as Artificial Intelligence Prognostic Models in Glioblastoma: A Systematic Review and Meta-Analysis

被引:0
|
作者
Wardhana, Dewa Putu Wisnu [1 ]
Maliawan, Sri [2 ]
Mahadewa, Tjokorda Gde Bagus [2 ]
Rosyidi, Rohadi Muhammad [3 ]
Wiranata, Sinta [4 ]
机构
[1] Univ Udayana, Udayana Univ Hosp, Fac Med, Neurosurg Div,Dept Surg, Denpasar 80361, Indonesia
[2] Univ Udayana, Prof Dr IGNG Ngoerah Gen Hosp, Fac Med, Dept Surg,Neurosurg Div, Denpasar 80113, Indonesia
[3] Mataram Univ, West Nusa Tenggara Gen Hosp, Med Fac, Dept Neurosurg, Mataram 84371, Indonesia
[4] Univ Udayana, Fac Med, Denpasar 80232, Indonesia
关键词
glioblastoma; radiomic features; artificial intelligence; overall survival; progression-free survival; PRIMARY BRAIN; SURVIVAL; TUMORS; EPIDEMIOLOGY; PREDICTOR;
D O I
10.3390/diagnostics14212354
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Glioblastoma, the predominant primary tumor among all central nervous systems, accounts for around 80% of cases. Prognosis in neuro-oncology involves assessing the disease's progression in different individuals, considering the time between the initial pathological diagnosis and the time until the disease worsens. A noninvasive therapeutic approach called radiomic features (RFs), which involves the application of artificial intelligence in MRI, has been developed to address this issue. This study aims to systematically gather evidence and evaluate the prognosis significance of radiomics in glioblastoma using RFs. Methods: We conducted an extensive search across the PubMed, ScienceDirect, EMBASE, Web of Science, and Cochrane databases to identify relevant original studies examining the use of RFs to evaluate the prognosis of patients with glioblastoma. This thorough search was completed on 25 July 2024. Our search terms included glioblastoma, MRI, magnetic resonance imaging, radiomics, and survival or prognosis. We included only English-language studies involving human subjects, excluding case reports, case series, and review studies. The studies were classified into two quality categories: those rated 4-6 were considered moderate-, whereas those rated 7-9 were high-quality using the Newcastle-Ottawa Scale (NOS). Hazard ratios (HRs) and their 95% confidence intervals (CIs) for OS and PFS were combined using random effects models. Results: In total, 253 studies were found in the initial search across the five databases. After screening the articles, 40 were excluded due to not meeting the eligibility criteria, and we included only 14 studies. All twelve OS and eight PFS trials were considered, involving 1.639 and 747 patients, respectively. The random effects model was used to calculate the pooled HRs for OS and PFS. The HR for OS was 3.59 (95% confidence interval [CI], 1.80-7.17), while the HR for PFS was 4.20 (95% CI, 1.02-17.32). Conclusions: An RF-AI-based approach offers prognostic significance for OS and PFS in patients with glioblastoma.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Artificial Intelligence for Detecting Cephalometric Landmarks: A Systematic Review and Meta-analysis
    Germana de Queiroz Tavares Borges Mesquita
    Walbert A. Vieira
    Maria Tereza Campos Vidigal
    Bruno Augusto Nassif Travençolo
    Thiago Leite Beaini
    Rubens Spin-Neto
    Luiz Renato Paranhos
    Rui Barbosa de Brito Júnior
    Journal of Digital Imaging, 2023, 36 : 1158 - 1179
  • [22] Prognostic value of preoperative seizure in adult glioblastoma: A systematic review and meta-analysis
    Chen, Keyu
    Duan, Pei
    Jiang, Pucha
    ASIAN JOURNAL OF SURGERY, 2021, 44 (07) : 994 - 995
  • [23] Communicating hydrocephalus in glioblastoma presenting as chronic hydrocephalus: systematic review and meta-analysis
    Perez-Alfayate, Rebeca
    Cabezas-Camarero, Santiago
    Castano-Montoya, Juan Pablo
    Arevalo-Saenz, Ana Alejandra
    Carrascosa-Granada, Angela
    Alonso-Lera, Pedro
    Grasso, Giovanni
    ACTA NEUROCHIRURGICA, 2025, 167 (01) : 19
  • [24] Radiotherapy for glioblastoma in the elderly A protocol for systematic review and meta-analysis
    Huang, Puxin
    Li, Liqiang
    Qiao, Juntang
    Li, Xiang
    Zhang, Peng
    MEDICINE, 2020, 99 (52)
  • [25] Artificial intelligence performance in detecting lymphoma from medical imaging: a systematic review and meta-analysis
    Bai, Anying
    Si, Mingyu
    Xue, Peng
    Qu, Yimin
    Jiang, Yu
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [26] Diagnostic performance of artificial intelligence in multiple sclerosis: a systematic review and meta-analysis
    Fardin Nabizadeh
    Elham Ramezannezhad
    Amirhosein Kargar
    Amir Mohammad Sharafi
    Ali Ghaderi
    Neurological Sciences, 2023, 44 : 499 - 517
  • [27] ARTIFICIAL INTELLIGENCE PLATFORMS IN DENTAL CARIES DETECTION: A SYSTEMATIC REVIEW AND META-ANALYSIS
    Abbott, Lyndon p
    Saikia, Ankita
    Anthonappa, Robert p
    JOURNAL OF EVIDENCE-BASED DENTAL PRACTICE, 2025, 25 (01)
  • [28] Detection of cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis
    Din, Munaib
    Agarwal, Siddharth
    Grzeda, Mariusz
    Wood, David A.
    Modat, Marc
    Booth, Thomas C.
    JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2023, 15 (03) : 262 - +
  • [29] Diagnostic performance of artificial intelligence in multiple sclerosis: a systematic review and meta-analysis
    Nabizadeh, Fardin
    Ramezannezhad, Elham
    Kargar, Amirhosein
    Sharafi, Amir Mohammad
    Ghaderi, Ali
    NEUROLOGICAL SCIENCES, 2023, 44 (02) : 499 - 517
  • [30] The efficacy of artificial intelligence in diabetic retinopathy screening: a systematic review and meta-analysis
    Abdullah S. Alqahtani
    Wasan M. Alshareef
    Hanan T. Aljadani
    Wesal O. Hawsawi
    Marya H. Shaheen
    International Journal of Retina and Vitreous, 11 (1)