Theoretical and numerical study of a Burgers viscous equation type with moving boundary

被引:0
|
作者
Pereira, L. C. M. [1 ]
Carmo, B. A. [2 ]
Rincon, M. A. [2 ]
Apolaya, R. F. [3 ]
机构
[1] Fed Univ State Rio de Janeiro, Dept Math, Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, Inst Comp, Rio De Janeiro, Brazil
[3] Univ Fed Fluminense, Inst Math & Stat, Rio De Janeiro, Brazil
关键词
Burgers viscous equation; existence and uniqueness; linearized Crank-Nicolson-Galerkin method; moving boundary; numerical simulation; SIMULATION; MODEL; WAVE;
D O I
10.1002/mma.10601
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate the existence, uniqueness, and numerical aspects of a one- and two-dimensional nonlinear viscous type Burgers problem defined in a noncylindrical domain. In order to obtain the existence and uniqueness of the solution, the problem with a moving ends is transformed into an equivalent problem in a cylindrical through a diffeomorphism between the domains. The numerical simulation for the one- and two-dimensional cases is performed using Lagrange with degrees 1-3 and cubic Hermite polynomials as base functions for applying the linearized Crank-Nicolson-Galerkin method to obtain an approximate numerical solution. Graphs prove the efficiency of the numerical method along with the order of numerical convergence consistent with the degree of the base polynomial.
引用
收藏
页码:5255 / 5277
页数:23
相关论文
共 50 条
  • [41] On the global dynamics of a controlled viscous burgers' equation
    Byrnes Ch.I.
    Gilliam D.S.
    Shubov V.I.
    Journal of Dynamical and Control Systems, 1998, 4 (4) : 457 - 519
  • [42] Control and Sensitivity Reduction for a Viscous Burgers' Equation
    Allen, E.
    Burns, J. A.
    Gilliam, D. S.
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 967 - 972
  • [43] On the global dynamics of a controlled viscous Burgers' equation
    Dept. of Syst. Sci. and Mathematics, Washington University, St. Louis, MO 63130, United States
    不详
    J Dyn Control Syst, 4 (457-519):
  • [44] A Liouville theorem for the viscous Burgers’s equation
    Carlos E. Kenig
    Frank Merle
    Journal d'Analyse Mathématique, 2002, 87 : 281 - 298
  • [45] LOCAL STABILIZATION OF VISCOUS BURGERS EQUATION WITH MEMORY
    Akram, Wasim
    Mitra, Debanjana
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (03): : 939 - 973
  • [46] On the global dynamics of a controlled viscous Burgers' equation
    Byrnes, Ch.I.
    Gilliam, D.S.
    Shubov, V.I.
    Journal of Dynamical and Control Systems, 1998, 4 (04): : 457 - 519
  • [47] A Liouville theorem for the viscous Burgers's equation
    Kenig, CE
    Merle, F
    JOURNAL D ANALYSE MATHEMATIQUE, 2002, 87 (1): : 281 - 298
  • [48] Asymptotic behavior of solutions to the viscous Burgers equation
    Yanagisawa, Taku
    OSAKA JOURNAL OF MATHEMATICS, 2007, 44 (01) : 99 - 119
  • [49] CERTIFIED REDUCED-BASIS SOLUTIONS OF VISCOUS BURGERS EQUATION PARAMETRIZED BY INITIAL AND BOUNDARY VALUES
    Janon, Alexandre
    Nodet, Maelle
    Prieur, Clementine
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (02): : 317 - 348
  • [50] Small time global null controllability for a viscous Burgers' equation despite the presence of a boundary layer
    Marbach, Frederic
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (02): : 364 - 384