POSEIDON: Efficient Function Placement at the Edge Using Deep Reinforcement Learning

被引:0
作者
Jain, Prakhar [1 ]
Singhal, Prakhar [1 ]
Pandey, Divyansh [1 ]
Quatrocchi, Giovanni [2 ]
Vaidhyanathan, Karthik [1 ]
机构
[1] Int Inst Informat Technol, Software Engn Res Ctr, Hyderabad, India
[2] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Milan, Italy
来源
SERVICE-ORIENTED COMPUTING, ICSOC 2024, PT I | 2025年 / 15404卷
关键词
Edge Computing; Serverless; Function Placement; Deep Reinforcement Learning;
D O I
10.1007/978-981-96-0805-8_2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Edge computing allows for reduced latency and operational costs compared to centralized cloud systems. In this context, serverless functions are emerging as a lightweight and effective paradigm for managing computational tasks on edge infrastructures. However, the placement of such functions in constrained edge nodes remains an open challenge. On one hand, it is key to minimize network delays and optimize resource consumption; on the other hand, decisions must be made in a timely manner due to the highly dynamic nature of edge environments. In this paper, we propose POSEIDON, a solution based on Deep Reinforcement Learning for the efficient placement of functions at the edge. POSEIDON leverages Proximal Policy Optimization (PPO) to place functions across a distributed network of nodes under highly dynamic workloads. A comprehensive empirical evaluation demonstrates that POSEIDON significantly reduces execution time, network delay, and resource consumption compared to state-of-the-art methods.
引用
收藏
页码:21 / 37
页数:17
相关论文
共 24 条
[1]   NEPTUNE: A Comprehensive Framework for Managing Serverless Functions at the Edge [J].
Baresi, Luciano ;
Hu, Davide Yi Xian ;
Quattrocchi, Giovanni ;
Terracciano, Luca .
ACM TRANSACTIONS ON AUTONOMOUS AND ADAPTIVE SYSTEMS, 2024, 19 (01)
[2]   NEPTUNE: Network- and GPU-aware Management of Serverless Functions at the Edge [J].
Baresi, Luciano ;
Hu, Davide Yi Xian ;
Quattrocchi, Giovanni ;
Terracciano, Luca .
2022 17TH INTERNATIONAL SYMPOSIUM ON SOFTWARE ENGINEERING FOR ADAPTIVE AND SELF-MANAGING SYSTEMS (SEAMS), 2022, :144-155
[3]   Towards Vertically Scalable Spark Applications [J].
Baresi, Luciano ;
Quattrocchi, Giovanni .
EURO-PAR 2018: PARALLEL PROCESSING WORKSHOPS, 2019, 11339 :106-118
[4]   Classification of optimization problems in fog computing [J].
Bellendorf, Julian ;
Mann, Zoltan Adam .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 107 :158-176
[5]   Cost-Effective App User Allocation in an Edge Computing Environment [J].
Lai, Phu ;
He, Qiang ;
Grundy, John ;
Chen, Feifei ;
Abdelrazek, Mohamed ;
Hosking, John ;
Yang, Yun .
IEEE TRANSACTIONS ON CLOUD COMPUTING, 2022, 10 (03) :1701-1713
[6]   Optimal Edge User Allocation in Edge Computing with Variable Sized Vector Bin Packing [J].
Lai, Phu ;
He, Qiang ;
Abdelrazek, Mohamed ;
Chen, Feifei ;
Hosking, John ;
Grundy, John ;
Yang, Yun .
SERVICE-ORIENTED COMPUTING (ICSOC 2018), 2018, 11236 :230-245
[7]  
Lillicrap T.P., 2015, CONTINUOUS CONTROL D
[8]   Criticality-Awareness Edge User Allocation for Public Safety [J].
Liu, Ensheng ;
Zheng, Liping ;
He, Qiang ;
Xu, Benzhu ;
Zhang, Gaofeng .
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (01) :221-234
[9]   Towards Revenue-Driven Multi-User Online Task Offloading in Edge Computing [J].
Ma, Zhi ;
Zhang, Sheng ;
Chen, Zhiqi ;
Han, Tao ;
Qian, Zhuzhong ;
Xiao, Mingjun ;
Chen, Ning ;
Wu, Jie ;
Lu, Sanglu .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (05) :1185-1198
[10]   Human-level control through deep reinforcement learning [J].
Mnih, Volodymyr ;
Kavukcuoglu, Koray ;
Silver, David ;
Rusu, Andrei A. ;
Veness, Joel ;
Bellemare, Marc G. ;
Graves, Alex ;
Riedmiller, Martin ;
Fidjeland, Andreas K. ;
Ostrovski, Georg ;
Petersen, Stig ;
Beattie, Charles ;
Sadik, Amir ;
Antonoglou, Ioannis ;
King, Helen ;
Kumaran, Dharshan ;
Wierstra, Daan ;
Legg, Shane ;
Hassabis, Demis .
NATURE, 2015, 518 (7540) :529-533