Robust H∞ output feedback control for polynomial discrete-time systems

被引:1
作者
Saat, S. [1 ]
Sakhtivel, R. [2 ]
Hussin, F. A. [3 ]
Sedek, M. [4 ]
机构
[1] Univ Teknikal Malaysia Melaka, Fac Elect & Comp Technol & Engn, Ctr Telecommun Res & Innovat CeTRI, Durian Tunggal 76100, Melaka, Malaysia
[2] Bharathiar Univ, Dept Appl Math, Coimbatore 641046, Tamil Nadu, India
[3] Univ Teknol Petronas, Elect & Elect Engn Dept, Seri Iskandar 32610, Perak, Malaysia
[4] Univ Teknikal Malaysia Melaka, Adv Mfg Ctr, Durian Tunggal 76100, Melaka, Malaysia
关键词
Integrator method; H-infinity performance; PDTS; Robust output feedback control; SOS optimization approach; DISSIPATIVE DYNAMICAL-SYSTEMS; NONLINEAR-SYSTEMS; STATE; OPTIMIZATION; INTEGRATOR; CASCADE;
D O I
10.1016/j.jfranklin.2024.107328
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper aims to design a robust output feedback controller with H Po performance for polynomial discrete-time systems (PDTS). This is due to the lack of research available on PDTS' output feedback control especially when uncertainty is considered in the system. To be specific, the norm-bounded uncertainties are considered instead of polytopic uncertainties and then a so-called ' scaled ' system is established to relate the robust H Po and the nonlinear H Po output feedback control problem. The integrator approach is introduced to overcome the nonconvexity issue when the polynomial Lyapunov function is selected. The controller is obtained by solving the sufficient conditions which are formulated in Polynomial Matrix Inequalities (PMIs) which is then converted into Sum of Squares (SOS) form. Semidefinite Programming (SDP) is used to obtain the results. Finally, the efficacy of the method is shown through numerical examples.
引用
收藏
页数:11
相关论文
共 36 条
[1]   H-INFINITY CONTROL FOR NONLINEAR-SYSTEMS WITH OUTPUT-FEEDBACK [J].
BALL, JA ;
HELTON, JW ;
WALKER, ML .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (04) :546-559
[2]   OPTIMUM PERFORMANCE LEVELS FOR MINIMAX FILTERS, PREDICTORS AND SMOOTHERS [J].
BASAR, T .
SYSTEMS & CONTROL LETTERS, 1991, 16 (05) :309-317
[3]  
Basar T., 1999, DYNAMIC NONCOOPERATI, V23
[4]  
Billings S.A., 2002, Encyclopaedia of Life Support Systems (EOLSS): Control Systems and Automation, Developed under the Auspices of UNESCO
[5]   Hankel Singular Values and LQG Characteristic Values of Discrete-Time Linear Systems in Cascade With Inner Systems [J].
Bucolo, Maide ;
Buscarino, Arturo ;
Fortuna, Luigi ;
Frasca, Mattia ;
Nunnari, Giuseppe .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (11) :4989-4994
[6]  
Chaibi R, 2017, 2017 INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV)
[7]   Robust H∞ control of Takagi-Sugeno fuzzy systems with state and input time delays [J].
Chen, Bing ;
Liu, Xiaoping ;
Lin, Chong ;
Liu, Kefu .
FUZZY SETS AND SYSTEMS, 2009, 160 (04) :403-422
[8]  
Chibani A., 2017, P INT C ADV SYST EL, P14
[9]   A new discrete-time robust stability conditions [J].
de Oliveira, MC ;
Bernussou, J ;
Geromel, JC .
SYSTEMS & CONTROL LETTERS, 1999, 37 (04) :261-265
[10]  
Du Z., 2021, IEEE Access, V9