Appearance of green tea compounds in plasma following acute green tea consumption is modulated by the gut microbiome in mice

被引:1
作者
Sterrett, John D. [1 ,2 ]
Quinn, Kevin D. [3 ]
Doenges, Katrina A. [3 ]
Nusbacher, Nichole M. [4 ]
Levens, Cassandra L. [5 ]
Armstrong, Mike L. [3 ]
Reisdorph, Richard M. [3 ]
Smith, Harry [3 ]
Saba, Laura M. [3 ]
Kuhn, Kristine A. [5 ]
Lozupone, Catherine A. [4 ]
Reisdorph, Nichole A. [3 ]
机构
[1] Univ Colorado, Dept Integrat Physiol, Boulder, CO USA
[2] Univ Colorado, Interdisciplinary Quantitat Biol, Boulder, CO USA
[3] Univ Colorado, Skaggs Sch Pharm & Pharmaceut Sci, Aurora, CO 80045 USA
[4] Univ Colorado, Dept Biomed Informat, Anschutz Med Campus, Aurora, CO USA
[5] Univ Colorado, Dept Med, Div Rheumatol, Aurora, CO USA
基金
美国国家科学基金会;
关键词
microbiome; metabolomics; 16S RNA; nutrition; multi-omics; symbiosis; gnotobiotic; food; polyphenols; METABOLOMICS; INFLAMMATION; DISEASE;
D O I
10.1128/spectrum.01799-24
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Studies have suggested that phytochemicals in green tea have systemic anti-inflammatory and neuroprotective effects. However, the mechanisms behind these effects are poorly understood, possibly due to the differential metabolism of phytochemicals resulting from variations in gut microbiome composition. To unravel this complex relationship, our team utilized a novel combined microbiome analysis and metabolomics approach applied to low complexity microbiome (LCM) and human colonized (HU) gnotobiotic mice treated with an acute dose of powdered matcha green tea. A total of 20 LCM mice received 10 distinct human fecal slurries for an n = 2 mice per human gut microbiome; 9 LCM mice remained un-colonized with human slurries throughout the experiment. We performed untargeted metabolomics on green tea and plasma to identify green tea compounds that were found in the plasma of LCM and HU mice that had consumed green tea. 16S ribosomal RNA gene sequencing was performed on feces of all mice at study end to assess microbiome composition. We found multiple green tea compounds in plasma associated with microbiome presence and diversity (including acetylagmatine, lactiflorin, and aspartic acid negatively associated with diversity). Additionally, we detected strong associations between bioactive green tea compounds in plasma and specific gut bacteria, including associations between spiramycin and Gemmiger and between wildforlide and Anaerorhabdus. Notably, some of the physiologically relevant green tea compounds are likely derived from plant-associated microbes, highlighting the importance of considering foods and food products as meta-organisms. Overall, we describe a novel workflow for discovering relationships between individual food compounds and the composition of the gut microbiome
引用
收藏
页数:20
相关论文
共 63 条
[1]   Sums of squares of distances in m-space [J].
Apostol, TM ;
Mnatsakanian, MA .
AMERICAN MATHEMATICAL MONTHLY, 2003, 110 (06) :516-526
[2]   Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice [J].
Axling, Ulrika ;
Olsson, Crister ;
Xu, Jie ;
Fernandez, Celine ;
Larsson, Sara ;
Strom, Kristoffer ;
Ahrne, Siv ;
Holm, Cecilia ;
Molin, Goran ;
Berger, Karin .
NUTRITION & METABOLISM, 2012, 9
[3]   Exploring tea (Camellia sinensis) microbiome: Insights into the functional characteristics and their impact on tea growth promotion [J].
Bag, Sagar ;
Mondal, Anupam ;
Banik, Avishek .
MICROBIOLOGICAL RESEARCH, 2022, 254
[4]   Fitting Linear Mixed-Effects Models Using lme4 [J].
Bates, Douglas ;
Maechler, Martin ;
Bolker, Benjamin M. ;
Walker, Steven C. .
JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01) :1-48
[5]  
Berg L., 2018, CREA DISCUSS PAP
[6]   Meta-Analysis Reveals Reproducible Gut Microbiome Alterations in Response to a High-Fat Diet [J].
Bisanz, Jordan E. ;
Upadhyay, Vaibhav ;
Turnbaugh, Jessie A. ;
Ly, Kimberly ;
Turnbaugh, Peter J. .
CELL HOST & MICROBE, 2019, 26 (02) :265-U181
[7]   Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].
Bolyen, Evan ;
Rideout, Jai Ram ;
Dillon, Matthew R. ;
Bokulich, NicholasA. ;
Abnet, Christian C. ;
Al-Ghalith, Gabriel A. ;
Alexander, Harriet ;
Alm, Eric J. ;
Arumugam, Manimozhiyan ;
Asnicar, Francesco ;
Bai, Yang ;
Bisanz, Jordan E. ;
Bittinger, Kyle ;
Brejnrod, Asker ;
Brislawn, Colin J. ;
Brown, C. Titus ;
Callahan, Benjamin J. ;
Caraballo-Rodriguez, Andres Mauricio ;
Chase, John ;
Cope, Emily K. ;
Da Silva, Ricardo ;
Diener, Christian ;
Dorrestein, Pieter C. ;
Douglas, Gavin M. ;
Durall, Daniel M. ;
Duvallet, Claire ;
Edwardson, Christian F. ;
Ernst, Madeleine ;
Estaki, Mehrbod ;
Fouquier, Jennifer ;
Gauglitz, Julia M. ;
Gibbons, Sean M. ;
Gibson, Deanna L. ;
Gonzalez, Antonio ;
Gorlick, Kestrel ;
Guo, Jiarong ;
Hillmann, Benjamin ;
Holmes, Susan ;
Holste, Hannes ;
Huttenhower, Curtis ;
Huttley, Gavin A. ;
Janssen, Stefan ;
Jarmusch, Alan K. ;
Jiang, Lingjing ;
Kaehler, Benjamin D. ;
Bin Kang, Kyo ;
Keefe, Christopher R. ;
Keim, Paul ;
Kelley, Scott T. ;
Knights, Dan .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :852-857
[8]   The metabolic signature associated with the Western dietary pattern: a cross-sectional study [J].
Bouchard-Mercier, Annie ;
Rudkowska, Iwona ;
Lemieux, Simone ;
Couture, Patrick ;
Vohl, Marie-Claude .
NUTRITION JOURNAL, 2013, 12
[9]   Plasma Sphingolipids Associated with Chronic Obstructive Pulmonary Disease Phenotypes [J].
Bowler, Russell P. ;
Jacobson, Sean ;
Cruickshank, Charmion ;
Hughes, Grant J. ;
Siska, Charlotte ;
Ory, Daniel S. ;
Petrache, Irina ;
Schaffer, Jean E. ;
Reisdorph, Nichole ;
Kechris, Katerina .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2015, 191 (03) :275-284
[10]  
Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/nmeth.3869, 10.1038/NMETH.3869]