Life cycle assessment and cost analysis of LC3 concrete considering sustainability and uncertainty

被引:0
|
作者
Huang, Xiaoxu [1 ,2 ]
Huang, Zichun [1 ,2 ]
Zhou, Yingwu [1 ,2 ]
Hu, Rui [1 ,2 ]
Hu, Biao [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Civil & Transportat Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Guangdong Prov Key Lab Durabil Marine Civil Engn, Shenzhen 518060, Peoples R China
来源
JOURNAL OF BUILDING ENGINEERING | 2025年 / 102卷
基金
中国国家自然科学基金;
关键词
Limestone calcined clay cement; Life cycle assessment; Cost analysis; Sustainability; Uncertainty; CALCINED CLAY CEMENT; RECYCLED AGGREGATE CONCRETE; CARBON-DIOXIDE EMISSIONS; IMPACT; CONSTRUCTION; INVENTORY; FRAMEWORK;
D O I
10.1016/j.jobe.2025.111960
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Finding sustainable alternatives to conventional concrete is crucial for mitigating the remarkable contribution of the construction sector to global resource consumption and carbon dioxide emissions. Based on limestone calcined clay cement (LC3), recycled coarse aggregate (RCA), seawater, and sea sand, a type of low-carbon concrete was developed recently. To further verify the environmentally friendly advantage of the new concrete (i.e., LC3 concrete), a comprehensive life cycle assessment (LCA) and cost analysis were conducted in this study, considering sustainability and uncertainty. Focusing on the "cradle-to-gate" scope, an integrated LCA model was proposed, and the life cycle sustainable cost (LCSC) was evaluated for LC3 concrete through the monetization of the environmental impacts (i.e., global warming potential, abiotic depletion potential-fossil fuels, acidification potential, eutrophication potential, and photochemical ozone creation potential). In addition, to reflect the variability and uncertainty associated with activities in the whole life cycle, a probabilistic assessment of LCA and cost is conducted combined with the Monte Carlo simulation (MCS). The deterministic results show that the environmental cost of LC3 concrete accounts for 21%-24 % of the corresponding LCSC, and the LCSC of LC3 concrete was reduced by 14%-29 % compared to conventional concrete, indicating a significant sustainable advantage. Probabilistic analysis results indicate that the environmental impacts, economic benefits and sustainability of LC3 concrete are superior to those of conventional concrete with a probability of 80%-100 %. Overall, LC3 concrete demonstrates significant potential to reduce environmental impacts and economic burdens, providing a promising path for sustainable development in construction materials.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Performance assessment of LC3 concrete structures considering life-cycle cost and environmental impacts
    Huang, Xiaoxu
    Jiao, Zhenxiao
    Xing, Feng
    Sui, Lili
    Hu, Biao
    Zhou, Yingwu
    JOURNAL OF CLEANER PRODUCTION, 2024, 436
  • [2] Service life and life cycle assessment of reinforced concrete systems with limestone calcined clay cement (LC3)
    Pillai, Radhakrishna G.
    Gettu, Ravindra
    Santhanam, Manu
    Rengaraju, Sripriya
    Dhandapani, Yuvaraj
    Rathnarajan, Sundar
    Basavaraj, Anusha S.
    CEMENT AND CONCRETE RESEARCH, 2019, 118 : 111 - 119
  • [3] Life cycle sustainability assessment method for concrete
    Choi, Wonyoung
    Tae, Sungho
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2024,
  • [4] Life cycle assessment to produce LC3 cements with kaolinitic waste from the Amazon region, Brazil
    Arruda Junior, Euler Santos
    Braga, Nallyton Tiago de Sales
    Barata, Marcio Santos
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 18
  • [5] Uncertainty analysis of life cycle assessment of asphalt surfacings
    Abed, Ahmed
    Bizarro, Diana Eliza Godoi
    Neves, Luis
    Parry, Tony
    Keijzer, Elisabeth
    Lo Presti, Davide
    Kalman, Bjorn
    Carrion, Ana Jimenez Del Barco
    Mantalovas, Konstantinos
    Buttitta, Gabriella
    Airey, Gordon
    ROAD MATERIALS AND PAVEMENT DESIGN, 2024, 25 (02) : 219 - 238
  • [6] Life cycle assessment and production cost of geopolymer concrete: A meta-analysis
    Martinez, Andres
    Miller, Sabbie A.
    RESOURCES CONSERVATION AND RECYCLING, 2025, 215
  • [7] Environmental sustainability assessment of microbial concrete: a comprehensive life cycle analysis
    Bhardwaj, Jeevna
    Mondal, Sandip
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2025, 10 (03)
  • [8] Building sustainability assessment model based on life cycle cost analysis and BIM technology
    Lei, Y.
    Dong, L.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2024, 21 (04) : 4089 - 4100
  • [9] Building sustainability assessment model based on life cycle cost analysis and BIM technology
    Y. Lei
    L. Dong
    International Journal of Environmental Science and Technology, 2024, 21 : 4089 - 4100
  • [10] Sustainable Assessment of Concrete Repairs through Life Cycle Assessment (LCA) and Life Cycle Cost Analysis (LCCA)
    Renne, Neel
    Kara De Maeijer, Patricia
    Craeye, Bart
    Buyle, Matthias
    Audenaert, Amaryllis
    INFRASTRUCTURES, 2022, 7 (10)