Eisenstein series modulo p2

被引:0
作者
Ahlgren, Scott [2 ]
Hanson, Michael [3 ]
Raum, Martin [1 ]
Richter, Olav K. [3 ]
机构
[1] Chalmers Tekn Hogskolaoch Goteborgs Univ, Inst Matemat Vetenskaper, S-41296 Gothenburg, Sweden
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Univ North Texas, Dept Math, Denton, TX 76203 USA
关键词
Eisenstein series; modular form congruences; Eichler-Shimura relations;
D O I
10.1515/forum-2024-0470
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study congruences for Eisenstein series on SL2(Z) modulo p2, where p = 5 is prime. It is classically known that all Eisenstein series of weight at least 4 are determined modulo p2 by those of weight at most p2 - p + 2. We prove that up to powers of Ep-1, each such Eisenstein series is in fact determined modulo p2 by a modular form of weight at most 2p - 4. We also determine E2 modulo p2 in terms of a modular form of weight p + 1.
引用
收藏
页数:10
相关论文
共 12 条
  • [1] ON THE THETA OPERATOR FOR MODULAR FORMS MODULO PRIME POWERS
    Chen, Imin
    Kiming, Ian
    [J]. MATHEMATIKA, 2016, 62 (02) : 321 - 336
  • [2] Cohen H., 2007, Analytic and modern tools, Graduate Texts in Mathematics, V240
  • [3] Katz N., 1973, p-adic properties of modular schemes and modular forms. Modular functions of one variable III, V350, P69
  • [4] Serre's modularity conjecture (II)
    Khare, Chandrashekhar
    Wintenberger, Jean-Pierre
    [J]. INVENTIONES MATHEMATICAE, 2009, 178 (03) : 505 - 586
  • [5] Khare C, 2009, INVENT MATH, V178, P485, DOI 10.1007/s00222-009-0205-7
  • [6] Modularity of 2-adic Barsotti-Tate representations
    Kisin, Mark
    [J]. INVENTIONES MATHEMATICAE, 2009, 178 (03) : 587 - 634
  • [7] KOHNEN W., 1984, Ellis Horwood series in mathematics and its applications, P197
  • [8] Mazur B., 1978, Inst. Hautes Etudes Sci. Publ. Math., V47, P33
  • [9] Rational decomposition of modular forms
    Popa, Alexandru A.
    [J]. RAMANUJAN JOURNAL, 2011, 26 (03) : 419 - 435
  • [10] Rankin R. A., 1952, P LOND MATH SOC, V2, P198