Normalized Solutions of the Choquard Equation with Sobolev Critical Exponent

被引:0
|
作者
Feng, Xiaojing [1 ]
Li, Yuhua [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Choquard problem; critical exponent; normalized solutions; asymptotic behavior;
D O I
10.1007/s11464-022-0292-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the existence and asymptotic behavior normalized solutions for the following Choquard equation involving Sobolev critical exponent -Delta u = lambda u + (I-alpha & lowast; |u|(q))|u|(q-2)u + |u|(4)u in R-3, under the prescribed L-2-norm integral(R3) u(2 )= c(2) with c > 0, where I-alpha denotes the Riesz potential. Let 5/3 < q < 3. When alpha > 0 small enough, we obtain the existence of the positive ground state solutions, which converge to a least energy solution of the limiting critical local problem as alpha -> 0(+).
引用
收藏
页数:21
相关论文
共 50 条