Normalized Solutions of the Choquard Equation with Sobolev Critical Exponent

被引:0
|
作者
Feng, Xiaojing [1 ]
Li, Yuhua [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Choquard problem; critical exponent; normalized solutions; asymptotic behavior;
D O I
10.1007/s11464-022-0292-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the existence and asymptotic behavior normalized solutions for the following Choquard equation involving Sobolev critical exponent -Delta u = lambda u + (I-alpha & lowast; |u|(q))|u|(q-2)u + |u|(4)u in R-3, under the prescribed L-2-norm integral(R3) u(2 )= c(2) with c > 0, where I-alpha denotes the Riesz potential. Let 5/3 < q < 3. When alpha > 0 small enough, we obtain the existence of the positive ground state solutions, which converge to a least energy solution of the limiting critical local problem as alpha -> 0(+).
引用
收藏
页数:21
相关论文
共 50 条
  • [21] NORMALIZED SOLUTIONS OF THE AUTONOMOUS KIRCHHOFF EQUATION WITH SOBOLEV CRITICAL EXPONENT: SUB- AND SUPER-CRITICAL CASES
    LI, Quangqing
    Radulescu, Vicentiu D.
    Zhang, Jian
    Zhao, X. I. N.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (02) : 663 - 678
  • [22] Existence of solutions for elliptic equation with critical Sobolev exponent
    Xiu, Zonghu
    MECHATRONICS AND APPLIED MECHANICS II, PTS 1 AND 2, 2013, 300-301 : 1205 - 1208
  • [23] Quasilinear Choquard equation with critical exponent
    Su, Yu
    Shi, Hongxia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 508 (01)
  • [24] Multiple Normalized Solutions for Biharmonic Choquard Equation with Hardy-Littlewood-Sobolev Upper Critical and Combined Nonlinearities
    Chen, Jianqing
    Chen, Zhewen
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (12)
  • [25] Multiple normalized solutions for a Sobolev critical Schrodinger equation
    Jeanjean, Louis
    Thanh Trung Le
    MATHEMATISCHE ANNALEN, 2022, 384 (1-2) : 101 - 134
  • [26] Normalized solutions for Sobolev critical fractional Schrodinger equation
    Li, Quanqing
    Nie, Jianjun
    Wang, Wenbo
    Zhou, Jianwen
    ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
  • [27] Nonlinear perturbations of a periodic magnetic Choquard equation with Hardy–Littlewood–Sobolev critical exponent
    H. Bueno
    N. da Hora Lisboa
    L. L. Vieira
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [28] Normalized solutions for Schrdinger equations with critical Sobolev exponent and mixed nonlinearities
    Wei, Juncheng
    Wu, Yuanze
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (06)
  • [29] Normalized solutions for Kirchhoff equations with Sobolev critical exponent and mixed nonlinearities
    Chen, Sitong
    Tang, Xianhua
    MATHEMATISCHE ANNALEN, 2025, 391 (02) : 2783 - 2836
  • [30] Existence of Ground State Solutions for Choquard Equation with the Upper Critical Exponent
    Abdullah Qadha, Sarah
    Chen, Haibo
    Qadha, Muneera Abdullah
    FRACTAL AND FRACTIONAL, 2023, 7 (12)