Normalized Solutions of the Choquard Equation with Sobolev Critical Exponent

被引:0
|
作者
Feng, Xiaojing [1 ]
Li, Yuhua [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Choquard problem; critical exponent; normalized solutions; asymptotic behavior;
D O I
10.1007/s11464-022-0292-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the existence and asymptotic behavior normalized solutions for the following Choquard equation involving Sobolev critical exponent -Delta u = lambda u + (I-alpha & lowast; |u|(q))|u|(q-2)u + |u|(4)u in R-3, under the prescribed L-2-norm integral(R3) u(2 )= c(2) with c > 0, where I-alpha denotes the Riesz potential. Let 5/3 < q < 3. When alpha > 0 small enough, we obtain the existence of the positive ground state solutions, which converge to a least energy solution of the limiting critical local problem as alpha -> 0(+).
引用
收藏
页数:21
相关论文
共 50 条
  • [1] MULTIPLICITY AND CONCENTRATION OF SOLUTIONS TO A SINGULAR CHOQUARD EQUATION WITH CRITICAL SOBOLEV EXPONENT
    Yu, Shengbin
    Chen, Jianqing
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (01): : 110 - 136
  • [2] Normalized Solutions for the Fractional Choquard Equations with Hardy-Littlewood-Sobolev Upper Critical Exponent
    Meng, Yuxi
    He, Xiaoming
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [3] Normalized solutions to the nonlinear Choquard equations with Hardy-Littlewood-Sobolev upper critical exponent
    Shang, Xudong
    Ma, Pei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 521 (02)
  • [4] Bound state solutions of fractional Choquard equation with Hardy–Littlewood–Sobolev critical exponent
    Xiaolong Yang
    Computational and Applied Mathematics, 2021, 40
  • [5] Multiple solutions for nonhomogeneous Choquard equation involving Hardy–Littlewood–Sobolev critical exponent
    Zifei Shen
    Fashun Gao
    Minbo Yang
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [6] Existence and uniqueness of solutions for Choquard equation involving Hardy–Littlewood–Sobolev critical exponent
    Lun Guo
    Tingxi Hu
    Shuangjie Peng
    Wei Shuai
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [7] NORMALIZED SOLUTIONS FOR LOWER CRITICAL CHOQUARD EQUATIONS WITH CRITICAL SOBOLEV PERTURBATION
    Yao, Shuai
    Chen, Haibo
    Radulescu, Vicentiu D.
    Sun, Juntao
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (03) : 3696 - 3723
  • [8] Bound state solutions of fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent
    Yang, Xiaolong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (05):
  • [9] Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent
    Guo, Lun
    Hu, Tingxi
    Peng, Shuangjie
    Shuai, Wei
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)
  • [10] Multiple solutions for nonhomogeneous Choquard equation involving Hardy-Littlewood-Sobolev critical exponent
    Shen, Zifei
    Gao, Fashun
    Yang, Minbo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):