Improved Liu estimator for the beta regression model: methods, simulation and applications

被引:0
作者
Ilyas, Nimra [1 ]
Amin, Muhammad [1 ]
Akram, Muhammad Nauman [1 ]
Siddiqa, Syeda Maryam [2 ]
机构
[1] Univ Sargodha, Dept Stat, Sargodha, Pakistan
[2] Women Univ, Dept Stat, Multan, Pakistan
关键词
beta regression; mean square error; beta liu estimator; multicollinearity; RIDGE-REGRESSION; PERFORMANCE; PARAMETERS;
D O I
10.37190/ord250102
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The beta regression model (BRM) is a well-known approach to modeling a response variable that has a beta distribution. The maximum likelihood estimator (MLE) does not produce accurate results for the BRM when the data has a high degree of multicollinearity. We propose a one-parameter beta Liu estimator (OPBLE) for the BRM to tackle the weaknesses of the available Liu estimator in dealing with the issue of multicollinearity. Using the mean square error (MSE), we analytically show that the proposed estimator performs more efficiently than the MLE, beta ridge regression estimator (BRRE), and beta Liu estimator (BLE). We conduct a simulation study and use two practical examples to investigate the performance of the OPBLE. Using the findings from the simulations and empirical studies, we demonstrate the superiority of the proposed estimator over the MLE, BRRE, and BLE in the presence of multicollinearity in the regressors.
引用
收藏
页码:21 / 43
页数:23
相关论文
共 35 条
[1]   Dawoud-Kibria Estimator for Beta Regression Model: Simulation and Application [J].
Abonazel, Mohamed R. ;
Dawoud, Issam ;
Awwad, Fuad A. ;
Lukman, Adewale F. .
FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8
[2]   A New Two-Parameter Estimator for Beta Regression Model: Method, Simulation, and Application [J].
Abonazel, Mohamed R. ;
Algamal, Zakariya Yahya ;
Awwad, Fuad A. ;
Taha, Ibrahim M. .
FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 7
[3]   A new modified ridge-type estimator for the beta regression model: simulation and application [J].
Akram, Muhammad Nauman ;
Amin, Muhammad ;
Elhassanein, Ahmed ;
Ullah, Muhammad Aman .
AIMS MATHEMATICS, 2022, 7 (01) :1035-1057
[4]   Developing a Liu-type estimator in beta regression model [J].
Algamal, Zakariya Yahya ;
Abonazel, Mohamed R. .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (05)
[5]   On the estimation of Bell regression model using ridge estimator [J].
Amin, Muhammad ;
Akram, Muhammad Nauman ;
Majid, Abdul .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (03) :854-867
[6]   James Stein Estimator for the Beta Regression Model with Application to Heat-Treating Test and Body Fat Datasets [J].
Amin, Muhammad ;
Ashraf, Hajra ;
Bakouch, Hassan S. ;
Qarmalah, Najla .
AXIOMS, 2023, 12 (06)
[7]   New ridge estimators in the inverse Gaussian regression: Monte Carlo simulation and application to chemical data [J].
Amin, Muhammad ;
Qasim, Muhammad ;
Afzal, Saima ;
Naveed, Khalid .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) :6170-6187
[8]  
Asar Y, 2017, KUWAIT J SCI, V44, P75
[9]  
Dorugade A.V., 2010, Applied Math. Sci, V4, P447
[10]  
DuNDER E., 2020, Journal of New Theory, V33, P76