On the number of limit cycles for a perturbed cubic reversible Hamiltonian system

被引:0
作者
Yang, Jihua [1 ]
机构
[1] Tianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
ISOCHRONOUS CENTERS; PIECEWISE-SMOOTH; BIFURCATION; INTEGRALS; PLANAR;
D O I
10.1063/5.0211447
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the limit cycle problem of a cubic reversible Hamiltonian system under perturbation of polynomials of degree n with a switching line x = 0. The upper and lower bounds of the number of limit cycles are obtained using the first order Melnikov function and its expansion. The method for calculating the Melnikov function relies upon some iterative formulas, which differs from other approaches.
引用
收藏
页数:9
相关论文
共 30 条
  • [1] Beyond the Bristol book: Advances and perspectives in non-smooth dynamics and applications
    Belykh, Igor
    Kuske, Rachel
    Porfiri, Maurizio
    Simpson, David J. W.
    [J]. CHAOS, 2023, 33 (01)
  • [2] Calogero F., 2008, Isochronous Systems
  • [3] Limit cycles by perturbing quadratic isochronous centers inside piecewise polynomial differential systems
    Cen, Xiuli
    Liu, Changjian
    Yang, Lijun
    Zhang, Meirong
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (12) : 6083 - 6126
  • [4] On the number of limit cycles for a class of discontinuous quadratic differential systems
    Cen, Xiuli
    Li, Shimin
    Zhao, Yulin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) : 314 - 342
  • [5] Chavarriga J., 1999, Isochronous Centers of Cubic Reversible Systems
  • [6] Chavarriga J., 1999, Qual. Theor. Dyn. Syst., V1, P1, DOI DOI 10.1007/BF02969404
  • [7] BIFURCATION OF LIMIT-CYCLES FROM QUADRATIC ISOCHRONES
    CHICONE, C
    JACOBS, M
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 91 (02) : 268 - 326
  • [8] On Commuting Vector Fields and Darboux Functions for Planar Differential Equations
    Choudhury, A. Ghose
    Guha, Partha
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2013, 34 (03) : 212 - 226
  • [9] Conti R., 1994, LECT NOTES PURE APPL, V152, P21
  • [10] DiBernardo M, 2008, APPL MATH SCI, V163, P1, DOI 10.1007/978-1-84628-708-4