Analyzing different household energy use patterns using clustering and machine learning

被引:0
|
作者
Cui, Xue [1 ]
Lee, Minhyun [2 ]
Uddin, Mohammad Nyme [1 ]
Zhang, Xuange [1 ]
Zakka, Vincent Gbouna [3 ]
机构
[1] Hong Kong Polytech Univ, Dept Bldg & Real Estate, Hung Hom, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Res Inst Smart Energy, Dept Bldg & Real Estate, Hung Hom,Kowloon, Hong Kong, Peoples R China
[3] Aston Univ, Coll Engn & Phys Sci, Birmingham, England
关键词
Energy use pattern; EUI level; Clustering; SHapley Additive exPlanations; Classification model; Machine learning; Residential buildings; BENCHMARKING; PREDICTION; BUILDINGS;
D O I
10.1016/j.rser.2025.115335
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As the residential sector in the United States holds significant energy-saving potential, identifying and analyzing different energy use patterns is essential for households to assess their energy use intensity levels and understand their energy consumption practices. Most studies fail to differentiate between household energy use intensity levels when analyzing energy consumption practices and require actual long-term energy use data. To address these gaps, this study clustered households in the United States from the 2020 Residential Energy Consumption Survey into groups with different energy use intensity levels, then developed a classification model based on this energy use intensity level-labeled dataset for predicting household energy use intensity levels. K-means performed best among the five clustering approaches, which categorized households into low, medium, and high energy use patterns. Statistical analysis revealed significant differences in energy use intensity across the three energy use patterns, showing that high patterns had a median energy use intensity 1.88 times higher than medium patterns and 3.58 times higher than low patterns. Three machine learning algorithms were used to develop classification models, where the eXtreme Gradient Boosting-based model performed best, with an average accuracy of 0.85. This classification model can reliably assess household energy use intensity levels within seconds using only a few household features, enhancing household energy-saving motivation and addressing challenges in long-term data collection. Finally, SHapley Additive exPlanations was applied to the classification model to analyze different energy use patterns, providing targeted energy-saving priorities for three energy use patterns, and enabling more effective energy management strategies.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Distinguishing Household Groupings within a Precinct Based on Energy Usage Patterns Using Machine Learning Analysis
    Malatesta, Troy
    Li, Qilin
    Breadsell, Jessica K.
    Eon, Christine
    ENERGIES, 2023, 16 (10)
  • [2] Machine learning approaches for predicting household transportation energy use
    Amiri, Shideh Shams
    Mostafavi, Nariman
    Lee, Earl Rusty
    Hoque, Simi
    CITY AND ENVIRONMENT INTERACTIONS, 2020, 7
  • [3] Analyzing the difference between deep learning and machine learning features of EEG signal using clustering techniques
    Saha, Anushri
    Rathore, Sachin Singh
    Sharma, Shivam
    Samanta, Debasis
    PROCEEDINGS OF 2019 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2019, : 660 - 664
  • [4] An interactive clustering method via metric learning for analyzing energy consumption patterns
    Wang, Yunzhe
    Cao, Tianyuan
    Wang, Huixue
    Fu, Qiming
    Chen, Jianping
    Lu, You
    JOURNAL OF BUILDING ENGINEERING, 2024, 98
  • [5] Analyzing DNA methylation patterns in subjects diagnosed with schizophrenia using machine learning methods
    Moghadam, Behrooz Torabi
    Etemadikhah, Mitra
    Rajkowska, Grazyna
    Stockmeier, Craig
    Grabherrd, Manfred
    Komorowski, Jan
    Feuk, Lars
    Carlstrom, Eva Lindholm
    JOURNAL OF PSYCHIATRIC RESEARCH, 2019, 114 : 41 - 47
  • [6] Energy consumption prediction and household feature analysis for different residential building types using machine learning and SHAP: Toward energy-efficient buildings
    Cui, Xue
    Lee, Minhyun
    Koo, Choongwan
    Hong, Taehoon
    ENERGY AND BUILDINGS, 2024, 309
  • [7] Winners are not keepers: Characterizing household engagement, gains, and energy patterns in demand response using machine learning in the United States
    Todd-Blick, Annika
    Spurlock, C. Anna
    Jin, Ling
    Cappers, Peter
    Borgeson, Sam
    Fredman, Dan
    Zuboy, Jarett
    ENERGY RESEARCH & SOCIAL SCIENCE, 2020, 70
  • [8] Analyzing the Feasibility of Different Machine Learning Techniques for Energy Imbalance Classification in Smart Grid
    Muzumdar, Ajit
    Modi, Chirag N.
    Madhu, G. M.
    Vyjayanthi, C.
    2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,
  • [9] Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders
    Chou, Jui-Sheng
    Duc-Son Tran
    ENERGY, 2018, 165 : 709 - 726
  • [10] Clustering of facies in tight carbonates using machine learning
    Glover, Paul W. J.
    Mohammed-Sajed, Omar K.
    Akyuz, Cenk
    Lorinczi, Piroska
    Collier, Richard
    MARINE AND PETROLEUM GEOLOGY, 2022, 144