Score Network with Adaptive Augmentation Aggregator for Multivariate Time Series Representation Contrastive Learning

被引:0
|
作者
Zhou, Guichun [1 ]
Chen, Yijiang [1 ]
Zhou, Xiangdong [1 ]
机构
[1] Fudan Univ, Shanghai, Peoples R China
来源
DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2024, PT 2 | 2025年 / 14851卷
关键词
Time Series; Contrastive Learning; Adaptive Augmentation Aggregator; Representation learning;
D O I
10.1007/978-981-97-5779-4_5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The complexity of multichannel data, the intricate temporal dynamics, and the diverse frequency characteristics of time series pose significant challenges for self-supervised representation learning. To address these issues, we present the Teacher Student Score (TSS) framework, a novel contrastive learning approach for multidimensional time series representations. This framework introduces two key innovations. First, we present time-channel-frequency consistency (TCF-C) approach of time, channel, and frequency-based contrastive representations and incorporate it into contrastive learning framework. This technique utilizes a weighting mechanism to prioritize self-supervised tasks that emphasize consistency across these dimensions. Second, we propose a Score Network with Adaptive Augmentation Aggregator (AAA) module. This module dynamically combines augmented strategies to create a unified augmented representation, enhancing the efficacy of augmentation in contrastive learning. We evaluate our method on UEA datasets against eight state-of-the-art methods, and the results show that TSS achieves significant improvements over existing SOTAs of self-supervised learning for time series classification.
引用
收藏
页码:67 / 82
页数:16
相关论文
共 50 条
  • [21] TimeCLR: A self-supervised contrastive learning framework for univariate time series representation
    Yang, Xinyu
    Zhang, Zhenguo
    Cui, Rongyi
    KNOWLEDGE-BASED SYSTEMS, 2022, 245
  • [22] Anomaly Detection Framework With Contrastive Learning and Multiview Augmentation for Time-Series Domain Generalization
    Lee, Yeseul
    Song, Seunghwan
    Park, Kwan-Yong
    Koo, Byoung-Mo
    Baek, Jun-Geol
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [23] Graph Contrastive Learning with Adaptive Augmentation for Recommendation
    Jing, Mengyuan
    Zhu, Yanmin
    Zang, Tianzi
    Yu, Jiadi
    Tang, Feilong
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 13713 : 590 - 605
  • [24] Unsupervised Representation Learning in Multivariate Time Series with Simulated Data
    Lebese, Thabang
    Mattrand, Cecile
    Clair, David
    Bourinet, Jean-Marc
    2023 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE, PHM, 2023, : 217 - 225
  • [25] Spatio-Temporal Consistency for Multivariate Time-Series Representation Learning
    Lee, Sangho
    Kim, Wonjoon
    Son, Youngdoo
    IEEE ACCESS, 2024, 12 : 30962 - 30975
  • [26] Jointly Contrastive Representation Learning on Road Network and Trajectory
    Mao, Zhenyu
    Li, Ziyue
    Li, Dedong
    Bai, Lei
    Zhao, Rui
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1501 - 1510
  • [27] Online Multivariate Time Series Anomaly Detection Method Based on Contrastive Learning
    Dong, Xiyao
    Liu, Hui
    Du, Junzhao
    Wang, Zhengkai
    Wang, Cheng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XIII, ICIC 2024, 2024, 14874 : 468 - 479
  • [28] MulGad: Multi-granularity contrastive learning for multivariate time series anomaly detection
    Xiao, Bo-Wen
    Xing, Hong-Jie
    Li, Chun-Guo
    INFORMATION FUSION, 2025, 119
  • [29] A Memory-Guided Anomaly Detection Model with Contrastive Learning for Multivariate Time Series
    Zhang, Wei
    He, Ping
    Li, Ting
    Yang, Fan
    Liu, Ying
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 1893 - 1910
  • [30] Multiview Graph Contrastive Learning for Multivariate Time-Series Anomaly Detection in IoT
    Qin, Shuxin
    Chen, Lin
    Luo, Yongcan
    Tao, Gaofeng
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (24) : 22401 - 22414