skscope: Fast Sparsity-Constrained Optimization in Python']Python

被引:0
|
作者
Wang, Zezhi [1 ]
Zhu, Junxian [2 ]
Wang, Xueqin [1 ]
Zhu, Jin [3 ]
Peng, Huiyang [1 ]
Chen, Peng [1 ]
Wang, Anran [1 ]
Zhang, Xiaoke [1 ]
机构
[1] Univ Sci & Technol China, Int Inst Finance, Sch Management, Dept Stat & Finance, Hefei 230026, Anhui, Peoples R China
[2] Natl Univ Singapore, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore
[3] London Sch Econ & Polit Sci, Dept Stat, London, England
基金
中国国家自然科学基金;
关键词
sparsity-constrained optimization; automatic differentiation; nonlinear optimization; high-dimensional data; !text type='Python']Python[!/text; SUBSET-SELECTION; ALGORITHM; PURSUIT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Applying iterative solvers on sparsity-constrained optimization (SCO) requires tedious mathematical deduction and careful programming/debugging that hinders these solvers' broad impact. In the paper, the library skscope is introduced to overcome such an obstacle. With skscope, users can solve the SCO by just programming the objective function. The convenience of skscope is demonstrated through two examples in the paper, where sparse linear regression and trend filtering are addressed with just four lines of code. More importantly, skscope's efficient implementation allows state-of-the-art solvers to quickly attain the sparse solution regardless of the high dimensionality of parameter space. Numerical experiments reveal the available solvers in skscope can achieve up to 80x speedup on the competing relaxation solutions obtained via the benchmarked convex solver. skscope is published on the Python Package Index (PyPI) and Conda, and its source code is available at: https://github.com/abess-team/skscope.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On Solutions of Sparsity Constrained Optimization
    Pan L.-L.
    Xiu N.-H.
    Zhou S.-L.
    Journal of the Operations Research Society of China, 2015, 3 (4) : 421 - 439
  • [22] Tomosipo: fast, flexible, and convenient 3D tomography for complex scanning geometries in Python']Python
    Hendriksen, Allard A.
    Schut, Dirk
    Palenstijn, Willem Jan
    Vigano, Nicola
    Kim, Jisoo
    Pelt, Daniel M.
    van Leeuwen, Tristan
    Batenburg, K. Joost
    OPTICS EXPRESS, 2021, 29 (24) : 40494 - 40513
  • [23] Hyperspectral Unmixing Using Sparsity-Constrained Deep Nonnegative Matrix Factorization With Total Variation
    Feng, Xin-Ru
    Li, Heng-Chao
    Li, Jun
    Du, Qian
    Plaza, Antonio
    Emery, William J.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (10): : 6245 - 6257
  • [24] PyBrOpS: a Python']Python package for breeding program simulation and optimization for multi-objective breeding
    Shrote, Robert Z.
    Thompson, Addie M.
    G3-GENES GENOMES GENETICS, 2024, 14 (10):
  • [25] Hyperspectral unmixing using sparsity-constrained multilayer non-negative matrix factorization
    Fang, Hao
    Li, Aihua
    Wang, Tao
    Xu, Huoxi
    Su, Yanzhao
    Chang, Hongwei
    JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (04)
  • [26] Sparsity-constrained three-dimensional image reconstruction for C-arm angiography
    Rashed, Essam A.
    al-Shatouri, Mohammad
    Kudo, Hiroyuki
    COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 62 : 141 - 153
  • [27] DetPy (Differential Evolution Tools): A Python']Python toolbox for solving optimization problems using differential evolution
    Zielinski, Blazej
    Sciegienny, Szymon
    Orlicki, Hubert
    Ksiazek, Wojciech
    SOFTWAREX, 2025, 29
  • [28] Hyperspectral Unmixing via L1/2 Sparsity-Constrained Nonnegative Matrix Factorization
    Qian, Yuntao
    Jia, Sen
    Zhou, Jun
    Robles-Kelly, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (11): : 4282 - 4297
  • [29] A Python']Python tool for parameter estimation of "black box" macro- and micro-kinetic models with Bayesian optimization - petBOA
    Kasiraju, Sashank
    Wang, Yifan
    Bhandari, Saurabh
    Singh, Aayush R.
    Vlachos, Dionisios G.
    COMPUTER PHYSICS COMMUNICATIONS, 2025, 306
  • [30] Nonsmooth sparsity constrained optimization problems: optimality conditions
    Movahedian, N.
    Nobakhtian, S.
    Sarabadan, M.
    OPTIMIZATION LETTERS, 2019, 13 (05) : 1027 - 1038