A Dual-Branch Network With Feature Assistance for Automatic Modulation Recognition

被引:0
|
作者
Feng, Yuhang [1 ,2 ]
Duan, Ruifeng [1 ,2 ]
Li, Shurui [3 ]
Cheng, Peng [4 ,5 ]
Liu, Wanchun [6 ]
机构
[1] Beijing Forestry Univ, Sch Informat Sci & Technol, Beijing 100083, Peoples R China
[2] Beijing Forestry Univ, Sch Artificial Intelligence, Beijing 100083, Peoples R China
[3] Beijing Forestry Univ, Sch Technol, Beijing 100083, Peoples R China
[4] La Trobe Univ, Dept Comp Sci & Informat Technol, Melbourne, Vic 3086, Australia
[5] Univ Sydney, Sydney, NSW 2006, Australia
[6] Univ Sydney, Sch Elect Enginnering & Comp Sci, Camperdown, NSW 2308, Australia
基金
北京市自然科学基金;
关键词
Feature extraction; Transformers; Modulation; Correlation; Convolution; Accuracy; Encoding; Data mining; Australia; Training; Automatic modulation recognition; gramian angular field; depthwise separable convolution; transformer; dual-branch network; TRANSFORMER;
D O I
10.1109/LSP.2025.3527901
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatic modulation recognition (AMR) is a critical technology in wireless communications, aiming to achieve high recognition accuracy with low complexity in increasingly intricate electromagnetic environments. To tackle this challenge, in this paper, we propose a dual-branch convolution cascaded transformer network with feature assistance, termed DCTFANet. To enhance the differentiation between samples, we employ the gramian angular field (GAF) to capture potential temporal correlations between each data point. Subsequently, both I/Q sequences and GAF data are input into the model for joint signal feature extraction. The network backbone is constructed using multiple improved depthwise separable convolution (DSC) blocks, which significantly reduce computational complexity. Moreover, the backbone depth is flexibly adjustable to fully exploit local features of different data types. Finally, feature transition and the transformer encoder are used to reduce parameters and extract global feature. Experimental results on RML2016.10b show that the proposed method achieves higher recognition accuracy compared to several state-of-the-art methods, especially at low signal-to-noise ratios (SNRs), with an increase of at least 10.80% at -20 dB.
引用
收藏
页码:701 / 705
页数:5
相关论文
共 50 条
  • [1] Dual-branch mutual assistance network for salient object detection
    Yao, Zhaojian
    Wang, Luping
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (01) : 972 - 990
  • [2] Dual-branch network based on transformer for texture recognition
    Liu, Yangqi
    Dong, Hao
    Wang, Guodong
    Chen, Chenglizhao
    DIGITAL SIGNAL PROCESSING, 2024, 153
  • [3] A dual-branch feature fusion neural network for fish image fine-grained recognition
    Geng, Xu
    Gao, Jinxiong
    Zhang, Yonghui
    Wang, Rong
    VISUAL COMPUTER, 2024, 40 (10): : 6883 - 6896
  • [4] Dual-Branch Feature Fusion Network for Salient Object Detection
    Song, Zhehan
    Xu, Zhihai
    Wang, Jing
    Feng, Huajun
    Li, Qi
    PHOTONICS, 2022, 9 (01)
  • [5] Abnormal Fastener Recognition via Dual-Branch Supervised Contrastive Learning Network With Hard Feature Synthesis
    Wang, Jianzhu
    Wu, Jianqing
    Wang, Shengchun
    Zhao, Xinxin
    Li, Qingyong
    IEEE SENSORS JOURNAL, 2024, 24 (18) : 29365 - 29376
  • [6] Dual-Branch Multi-Level Feature Aggregation Network for Pansharpening
    Cheng, Gui
    Shao, Zhenfeng
    Wang, Jiaming
    Huang, Xiao
    Dang, Chaoya
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (11) : 2023 - 2026
  • [7] Classification of hyperspectral image based on dual-branch feature interaction network
    Li, Chenming
    Wang, Xiangyi
    Chen, Zhonghao
    Gao, Hongmin
    Xu, Shufang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (09) : 3258 - 3279
  • [8] Dual-Branch Multi-Level Feature Aggregation Network for Pansharpening
    Gui Cheng
    Zhenfeng Shao
    Jiaming Wang
    Xiao Huang
    Chaoya Dang
    IEEE/CAAJournalofAutomaticaSinica, 2022, 9 (11) : 2023 - 2026
  • [9] Dual-Branch Dynamic Modulation Network for Hyperspectral and LiDAR Data Classification
    Xu, Zhengyi
    Jiang, Wen
    Geng, Jie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [10] Dual-Branch Multimodal Fusion Network for Driver Facial Emotion Recognition
    Wang, Le
    Chang, Yuchen
    Wang, Kaiping
    APPLIED SCIENCES-BASEL, 2024, 14 (20):