Presently, a sustainable electrochemical Nitrogen Reduction Reaction (NRR) has been essentially found to be viable on transition metal-based catalysts. However, being cost-effective and non-corrosive, metal-free catalysts present an ideal solution for a sustainable world. Herein, through a DFT-based study, we demonstrate metal-free NRR catalysts, boron quantum dots with 13 atoms as a case study and their chemically modified counterparts when anchored on graphitic carbon nitride (g-C3N4) surface. The best catalyst among the studied, a silicon-doped boron quantum dot with a cagelike structure, is found to favour the dinitrogen to ammonia reaction pathway with a low liming potential and potential rate-determining step (PDS) of -0.11 V and 0.27 eV, respectively. The present work demonstrates as to how boron quantum dots, which are reported to be experimentally synthesised, can be exploited for ammonia synthesis when supported on the surface. These catalysts effectively suppress the HER, thus establishing its suitability as an ideal catalyst. The work also represents a futuristic pathway towards a metal-free catalyst for NRR.