A comprehensive perspective on the role of vitamin D signaling in maintaining bone homeostasis: Lessons from animal models

被引:0
作者
Rillaerts, Kayleigh [1 ]
Verlinden, Lieve [1 ]
Doms, Stefanie [1 ]
Carmeliet, Geert [1 ]
Verstuyf, Annemieke [1 ]
机构
[1] Katholieke Univ Leuven, Dept Chron Dis & Metab, Lab Clin & Expt Endocrinol, Herestr 49,Bus 902, B-3000 Leuven, Belgium
关键词
Vitamin D receptor; Vitamin D; Bone homeostasis; Calcium homeostasis; Rickets; Osteomalacia; Vitamin D transgenic mouse modelds; PARATHYROID-HORMONE GENE; MINERAL ION HOMEOSTASIS; D-RECEPTOR; 1,25-DIHYDROXYVITAMIN D-3; ALTERED OSTEOCLASTOGENESIS; 1-ALPHA-HYDROXYLASE GENE; 25-HYDROXYVITAMIN D-3; PHOSPHATE HOMEOSTASIS; SPLENOCYTE CULTURES; CALCIUM;
D O I
10.1016/j.jsbmb.2025.106732
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
1,25(OH)2D3 is well known for its role in maintaining normal serum calcium levels. Through its receptor, 1,25 (OH)2D3 enhances intestinal calcium absorption and renal calcium reabsorption, thereby ensuring serum calcium levels are within physiological range, which is in turn important for normal bone development and mineralization. The vitamin D receptor (VDR) achieves this via transcriptional induction of genes important in calcium transport. When intestinal and renal calcium (re)absorption is impaired, VDR-mediated signaling will stimulate bone resorption and inhibit mineralization in order to maintain normal serum calcium levels, as evidenced in mice with a systemic or intestine-specific deletion of the VDR. However, VDR signaling in bone is also reported to have anabolic effects. In this review we will discuss the effects of 1,25(OH)2D3-mediated VDR signaling on bone homeostasis and provide an overview of the in vitro experiments and various transgenic mice models that have been generated to unravel the role of VDR signaling in different bone cell types such as chondrocytes, (pre) osteoblasts, osteocytes, and (pre)osteoclasts.
引用
收藏
页数:10
相关论文
共 100 条
[1]   Regulation of FGF23 production and phosphate metabolism by bone-kidney interactions [J].
Agoro, Rafiou ;
White, Kenneth E. E. .
NATURE REVIEWS NEPHROLOGY, 2023, 19 (03) :185-193
[2]  
Akimbekov NS, 2022, ADV EXP MED BIOL, V1362, P37, DOI 10.1007/978-3-030-91623-7_5
[3]   Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: Formal histomorphometric and biomechanical analyses [J].
Amling, M ;
Priemel, M ;
Holzmann, T ;
Chapin, K ;
Rueger, JM ;
Baron, R ;
Demay, MB .
ENDOCRINOLOGY, 1999, 140 (11) :4982-4987
[4]   Intestinal Ca2+absorption revisited: A molecular and clinical approach [J].
Areco, Vanessa A. ;
Kohan, Romina ;
Talamoni, German ;
Tolosa de Talamoni, Nori G. ;
Peralta Lopez, Maria E. .
WORLD JOURNAL OF GASTROENTEROLOGY, 2020, 26 (24) :3344-3364
[5]   Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k [J].
Benn, Bryan S. ;
Ajibade, Dare ;
Porta, Angela ;
Dhawan, Puneet ;
Hediger, Matthias ;
Peng, Ji-Bin ;
Jiang, Yi ;
Oh, Goo Taeg ;
Jeung, Eui-Bae ;
Lieben, Liesbet ;
Bouillon, Roger ;
Carmeliet, Geert ;
Christakos, Sylvia .
ENDOCRINOLOGY, 2008, 149 (06) :3196-3205
[6]   Regulation of Phosphate Homeostasis by PTH, Vitamin D, and FGF23 [J].
Bergwitz, Clemens ;
Jueppner, Harald .
ANNUAL REVIEW OF MEDICINE, 2010, 61 :91-104
[7]  
Bikle D.D., 2000, Endotext. South Dartm. (MA)
[8]   Osteoclast differentiation and activation [J].
Boyle, WJ ;
Simonet, WS ;
Lacey, DL .
NATURE, 2003, 423 (6937) :337-342
[9]   Regulation of 25-hydroxyvitamin D3 1α-hydroxylase gene expression by parathyroid hormone and 1,25-dihydroxyvitamin D3 [J].
Brenza, HL ;
DeLuca, HF .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2000, 381 (01) :143-152
[10]   Mechanisms of intestinal calcium absorption [J].
Bronner, F .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2003, 88 (02) :387-393