Anti-Leibniz algebras: A non-commutative version of mock-Lie algebras

被引:0
作者
Braiek, Safa [1 ]
Chtioui, Taoufik [2 ]
Mabrouk, Sami [3 ]
机构
[1] Univ Sfax, Fac Sci, BP 1171, Sfax 3000, Tunisia
[2] Gabes Univ, Fac Sci, Mathemat & Applicat Lab LR17ES11, Gabes, Tunisia
[3] Univ Gafsa, Fac Sci, BP 2100, Gafsa, Tunisia
关键词
Mock-Lie algebra; Representation; Leibniz algebra; Anti-Leibniz algebra; Embedding tensor; Averaging operator;
D O I
10.1016/j.geomphys.2024.105385
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Leibniz algebras are non skew-symmetric generalization of Lie algebras. In this paper we introduce the notion of anti-Leibniz algebras as a "non commutative version" of mockLie algebras. Low dimensional classification of such algebras is given. Then we investigate the notion of averaging operators and more general embedding tensors to build some new algebraic structures, namely anti-associative dialgebras, anti-associative trialgebras and anti-Leibniz trialgebras. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:15
相关论文
共 25 条
[1]   On a type of commutative algebras [J].
Agore, A. L. ;
Militaru, G. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 485 :222-249
[2]   Pre-Poisson algebras [J].
Aguiar, M .
LETTERS IN MATHEMATICAL PHYSICS, 2000, 54 (04) :263-277
[3]  
Attan S., 2021, PREPRINT, DOI DOI 10.48550/ARXIV.2105.14650
[4]  
Baklouti A., 2025, J. Algebra Appl., DOI DOI 10.1142/S0219498825501427.2
[5]   Symplectic Jacobi-Jordan algebras [J].
Baklouti, Amir ;
Benayadi, Said .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (08) :1557-1578
[6]   Bialgebras via Manin triples of compatible mock-Lie algebras [J].
Benali, Karima .
COMMUNICATIONS IN ALGEBRA, 2024, 52 (09) :3672-3685
[7]   Bialgebras, the Yang-Baxter equation and Manin triples for mock-Lie algebras [J].
Benali, Karima ;
Chtioui, Taoufik ;
Hajjaji, Atef ;
Mabrouk, Sami .
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2023, 27 (02) :211-233
[8]  
Birkhoff G., 1949, C ALG THEOR NOMBR CT, P143
[9]   Jacobi-Jordan algebras [J].
Burde, Dietrich ;
Fialowski, Alice .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 459 :586-594
[10]  
Camacho LM, 2020, Communications in Mathematics, V28, P161, DOI [10.2478/cm-2020-0019, DOI 10.2478/CM-2020-0019]