Any cryptographic system strongly relies on randomness to ensure robust encryption and masking methods. True Random Number Generators play a fundamental role in this context. The National Institute of Standards and Technology (NIST) and the Bundesamt f & uuml;r Sicherheit in der Informationstechnik (BSI) provide guidelines for designing reliable entropy sources to fuel cryptographic Random Bit Generators. This work presents a highly parameterized, open-source implementation of a TRNG based on ring oscillators, complemented by an optimized Keccak conditioning unit. The design process is accompanied by a thorough study of the relevant literature and standards, specifying the requirements for reliable entropy sources in cryptographic systems. The design of the TRNG proposed in this paper aims to strike a balance between area, throughput, power consumption, and entropy, while adhering to these guidelines. The proposed design has undergone extensive testing and validation and has successfully passed the NIST SP 800-22, NIST SP 800-90B, and BSI AIS-31 tests, achieving a min-entropy per bit of 0.9982 (NIST) and 0.9998 (BSI).