Continuous glucose monitor metrics from five studies identify participants at risk for type 1 diabetes development

被引:1
作者
Calhoun, Peter [1 ]
Spanbauer, Charles [1 ]
Steck, Andrea K. [2 ]
Frohnert, Brigitte I. [2 ]
Herman, Mark A. [3 ]
Keymeulen, Bart [4 ,5 ,6 ]
Veijola, Riitta [7 ,8 ]
Toppari, Jorma [9 ]
Desouter, Aster [4 ,5 ,6 ]
Gorus, Frans [4 ,5 ,6 ]
Atkinson, Mark [10 ]
Wilson, Darrell M. [11 ]
Pietropaolo, Susan [3 ]
Beck, Roy W. [1 ]
机构
[1] Jaeb Ctr Hlth Res, Tampa, FL 33647 USA
[2] Univ Colorado, Barbara Davis Ctr Diabet, Sch Med, Aurora, CO USA
[3] Baylor Coll Med, Dept Med, Div Endocrinol, Houston, TX USA
[4] Univ Ziekenhuis Brussel UZ Brussel, Dept Diabet & Endocrinol, Brussels, Belgium
[5] Vrije Univ Brussel VUB, Diabet Res Ctr, Brussels, Belgium
[6] Belgian Diabet Registry, Brussels, Belgium
[7] Univ Oulu, Dept Paediat, Oulu, Finland
[8] Oulu Univ Hosp, Oulu, Finland
[9] Univ Turku, Inst Biomed, Turku, Finland
[10] Univ Florida, Diabet Inst, Gainesville, FL USA
[11] Stanford Univ, Dept Pediat, Stanford, CA USA
关键词
Continuous glucose monitoring; Measurement; Prediction of type 1 diabetes; Prevention; Type; 1; diabetes; ISLET AUTOANTIBODIES; CLINICAL ONSET; PROGRESSION; CHILDREN; KETOACIDOSIS; ADULTS;
D O I
10.1007/s00125-025-06362-1
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims/hypothesis We aimed to assess whether continuous glucose monitor (CGM) metrics can accurately predict stage 3 type 1 diabetes diagnosis in those with islet autoantibodies (AAb). Methods Baseline CGM data were collected from participants with >= 1 positive AAb type from five studies: ASK (n=79), BDR (n=22), DAISY (n=18), DIPP (n=8) and TrialNet Pathway to Prevention (n=91). Median follow-up time was 2.6 years (quartiles: 1.5 to 3.6 years). A participant characteristics-only model, a CGM metrics-only model and a full model combining characteristics and CGM metrics were compared. Results The full model achieved a numerically higher performance predictor estimate (C statistic=0.74; 95% CI 0.66, 0.81) for predicting stage 3 type 1 diabetes diagnosis compared with the characteristics-only model (C statistic=0.69; 95% CI 0.60, 0.77) and the CGM-only model (C statistic=0.68; 95% CI 0.61, 0.75). Greater percentage of time >7.8 mmol/l (p<0.001), HbA1c (p=0.02), having a first-degree relative with type 1 diabetes (p=0.02) and testing positive for IA-2 AAb (p<0.001) were associated with greater risk of type 1 diabetes diagnosis. Additionally, being male (p=0.06) and having a negative GAD AAb (p=0.09) were selected but not found to be significant. Participants classified as having low (n=79), medium (n=98) or high (n=41) risk of stage 3 type 1 diabetes diagnosis using the full model had a probability of developing symptomatic disease by 2 years of 5%, 13% and 48%, respectively. Conclusions/interpretation CGM metrics can help predict disease progression and classify an individual's risk of type 1 diabetes diagnosis in conjunction with other factors. CGM can also be used to better assess the risk of type 1 diabetes progression and define eligibility for potential prevention trials.
引用
收藏
页码:930 / 939
页数:10
相关论文
共 29 条
[1]   Diabetic Ketoacidosis at Diagnosis of Type 1 Diabetes in Colorado Children, 2010-2017 [J].
Alonso, G. Todd ;
Coakley, Alex ;
Pyle, Laura ;
Manseau, Katherine ;
Thomas, Sarah ;
Rewers, Arleta .
DIABETES CARE, 2020, 43 (01) :117-121
[2]   6. Glycemic Goals and Hypoglycemia: Standards of Care in Diabetes-2024 [J].
不详 .
DIABETES CARE, 2024, 47 :S111-S125
[3]   Clinical characteristics of children diagnosed with type 1 diabetes through intensive screening and follow-up [J].
Barker, JM ;
Goehrig, SH ;
Barriga, K ;
Hoffman, M ;
Slover, R ;
Eisenbarth, GS ;
Norris, JM ;
Klingensmith, GJ ;
Rewers, M .
DIABETES CARE, 2004, 27 (06) :1399-1404
[4]   On the adaptive control of the false discovery fate in multiple testing with independent statistics [J].
Benjamini, Y ;
Hochberg, Y .
JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2000, 25 (01) :60-83
[5]  
COX D, 1984, ANAL SURVIVAL DATA
[6]   Diabetes autoantibodies do not predict progression to diabetes in adults: the Diabetes Prevention Program [J].
Dabelea, D. ;
Ma, Y. ;
Knowler, W. C. ;
Marcovina, S. ;
Saudek, C. D. ;
Arakaki, R. ;
White, N. H. ;
Kahn, S. E. ;
Orchard, T. J. ;
Goldberg, R. ;
Palmer, J. ;
Hamman, R. F. .
DIABETIC MEDICINE, 2014, 31 (09) :1064-1068
[7]   Predictive power of screening for antibodies against insulinoma-associated protein 2 beta (IA-2β) and zinc transporter-8 to select first-degree relatives of type 1 diabetic patients with risk of rapid progression to clinical onset of the disease: implications for prevention trials [J].
De Grijse, J. ;
Asanghanwa, M. ;
Nouthe, B. ;
Albrecher, N. ;
Goubert, P. ;
Vermeulen, I. ;
Van Der Meeren, S. ;
Decochez, K. ;
Weets, I. ;
Keymeulen, B. ;
Lampasona, V. ;
Wenzlau, J. ;
Hutton, J. C. ;
Pipeleers, D. ;
Gorus, F. K. .
DIABETOLOGIA, 2010, 53 (03) :517-524
[8]   IA-2 autoantibodies predict impending Type I diabetes in siblings of patients [J].
Decochez, K ;
De Leeuw, IH ;
Keymeulen, B ;
Mathieu, C ;
Rottiers, R ;
Weets, I ;
Vandemeulebroucke, E ;
Truyen, I ;
Kaufman, L ;
Schuit, FC ;
Pipeleers, DG ;
Gorus, FK .
DIABETOLOGIA, 2002, 45 (12) :1658-1666
[9]   Comprehensive review of diabetic ketoacidosis: an update [J].
Elendu, Chukwuka ;
David, Johnson A. ;
Udoyen, Abasi-O. ;
Egbunu, Emmanuel O. ;
Ogbuiyi-Chima, Ifeanyichukwu C. ;
Unakalamba, Lilian O. ;
Temitope, Awotoye I. ;
Ibhiedu, Jennifer O. ;
Ibhiedu, Amos O. ;
Nwosu, Promise U. ;
Koroyin, Mercy O. ;
Eze, Chimuanya ;
Boluwatife, Adeyemo I. ;
Alabi, Omotayo ;
Okabekwa, Olisa S. ;
Fatoye, John O. ;
Ramon-Yusuf, Habiba I. .
ANNALS OF MEDICINE AND SURGERY, 2023, 85 (06) :2802-2807
[10]   IA-2-autoantibodies complement GAD(65)-autoantibodies in new-onset IDDM patients and help predict impending diabetes in their siblings [J].
Gorus, FK ;
Goubert, P ;
Semakula, C ;
Vandewalle, CL ;
DeSchepper, J ;
Scheen, A ;
Christie, MR ;
Pipeleers, DG ;
Balasse, E ;
Becq, H ;
Beirinckx, J ;
Claeys, L ;
Coeckelberghs, M ;
Coolens, JL ;
Coucke, W ;
Couturier, E ;
Craen, R ;
Daubresse, JC ;
DeLeeuw, I ;
Defoer, F ;
Delvigne, C ;
Dorchy, H ;
DuCaju, M ;
Fery, F ;
Gaham, M ;
Gerard, J ;
Gillet, C ;
Guiot, J ;
Herbaut, C ;
Keymeulen, B ;
Krzentowski, G ;
Lamberigts, G ;
Lauvaux, JP ;
Letiexhe, M ;
Monballyu, J ;
Moorkens, G ;
Nicolaij, D ;
Nobels, F ;
Pelckmans, MC ;
Purnode, A ;
Rooman, R ;
Rottiers, R ;
Schutyser, J ;
Somers, G ;
Terriere, L ;
Teuwen, J ;
Tits, J ;
VanAcker, K ;
VanCrombrugge, P ;
VAnGaal, L .
DIABETOLOGIA, 1997, 40 (01) :95-99