Predicting and Monitoring Immune Checkpoint Inhibitor Therapy Using Artificial Intelligence in Pancreatic Cancer

被引:0
作者
Yu, Guangbo [1 ]
Zhang, Zigeng [2 ]
Eresen, Aydin [2 ,3 ]
Hou, Qiaoming [2 ]
Amirrad, Farideh [4 ]
Webster, Sha [4 ]
Nauli, Surya [4 ,5 ]
Yaghmai, Vahid [2 ,3 ]
Zhang, Zhuoli [1 ,2 ,3 ,6 ]
机构
[1] Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92617 USA
[2] Univ Calif Irvine, Dept Radiol Sci, Irvine, CA 92868 USA
[3] Univ Calif Irvine, Chao Family Comprehens Canc Ctr, Irvine, CA 92612 USA
[4] Chapman Univ, Harry & Diane Rinker Hlth Sci Campus, Dept Biomed & Pharmaceut Sci, Irvine, CA 92618 USA
[5] Univ Calif Irvine, Dept Med, Irvine, CA 92868 USA
[6] Univ Calif Irvine, Dept Pathol & Lab Med, Irvine, CA 92617 USA
基金
美国国家卫生研究院;
关键词
PDAC; immunotherapy; immune checkpoint inhibitors; radiomics; artificial intelligence; deep learning; machine learning; PD-1; BLOCKADE; ANTI-CTLA-4; IMMUNOTHERAPY; PD-1/PD-L1; GUIDELINES; CRITERIA; LIGANDS; TUMORS; TRIAL;
D O I
10.3390/ijms252212038
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pancreatic cancer remains one of the most lethal cancers, primarily due to its late diagnosis and limited treatment options. This review examines the challenges and potential of using immunotherapy to treat pancreatic cancer, highlighting the role of artificial intelligence (AI) as a promising tool to enhance early detection and monitor the effectiveness of these therapies. By synthesizing recent advancements and identifying gaps in the current research, this review aims to provide a comprehensive overview of how AI and immunotherapy can be integrated to develop more personalized and effective treatment strategies. The insights from this review may guide future research efforts and contribute to improving patient outcomes in pancreatic cancer management.
引用
收藏
页数:14
相关论文
共 76 条
  • [1] Assessment of Tumor Mutational Burden and Outcomes in Patients With Diverse Advanced Cancers Treated With Immunotherapy
    Aggarwal, Charu
    Ben-Shachar, Rotem
    Gao, Yinjie
    Hyun, Seung Won
    Rivers, Zachary
    Epstein, Carrie
    Kaneva, Kristiyana
    Sangli, Chithra
    Nimeiri, Halla
    Patel, Jyoti
    [J]. JAMA NETWORK OPEN, 2023, 6 (05)
  • [2] Blood biomarkers for differential diagnosis and early detection of pancreatic cancer
    Al-Shaheri, Fawaz N.
    Alhamdani, Mohamed S. S.
    Bauer, Andrea S.
    Giese, Nathalia
    Buechler, Markus W.
    Hackert, Thilo
    Hoheisel, Joerg D.
    [J]. CANCER TREATMENT REVIEWS, 2021, 96
  • [3] Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance
    Bagchi, Sreya
    Yuan, Robert
    Engleman, Edgar G.
    [J]. ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 16, 2021, 2021, 16 : 223 - 249
  • [4] Review of the recent clinical trials for PD-1/PD-L1 based lung cancer immunotherapy
    Behrouzieh, Sadra
    Sheida, Fateme
    Rezaei, Nima
    [J]. EXPERT REVIEW OF ANTICANCER THERAPY, 2021, 21 (12) : 1355 - 1370
  • [5] CTLA-4/CD80 pathway regulates T cell infiltration into pancreatic cancer
    Bengsch, Fee
    Knoblock, Dawson M.
    Liu, Anni
    McAllister, Florencia
    Beatty, Gregory L.
    [J]. CANCER IMMUNOLOGY IMMUNOTHERAPY, 2017, 66 (12) : 1609 - 1617
  • [6] Preoperative Radiomics Approach to Evaluating Tumor-Infiltrating CD8+ T Cells in Patients With Pancreatic Ductal Adenocarcinoma Using Noncontrast Magnetic Resonance Imaging
    Bian, Yun
    Liu, Cong
    Li, Qi
    Meng, Yinghao
    Liu, Fang
    Zhang, Hao
    Fang, Xu
    Li, Jing
    Yu, Jieyu
    Feng, Xiaochen
    Ma, Chao
    Zhao, Zengrui
    Wang, Li
    Xu, Jun
    Shao, Chengwei
    Lu, Jianping
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 55 (03) : 803 - 814
  • [7] Machine Learning Links T-cell Function and Spatial Localization to Neoadjuvant Immunotherapy and Clinical Outcome in Pancreatic Cancer
    Blise, Katie E.
    Sivagnanam, Shamilene
    Betts, Courtney B.
    Betre, Konjit
    Kirchberger, Nell
    Tate, Benjamin J.
    Furth, Emma E.
    Costa, Andressa Dias
    Nowak, Jonathan A.
    Wolpin, Brian M.
    Vonderheide, Robert H.
    Goecks, Jeremy
    Coussens, Lisa M.
    Byrne, Katelyn T.
    [J]. CANCER IMMUNOLOGY RESEARCH, 2024, 12 (05) : 544 - 558
  • [8] Large-scale pancreatic cancer detection via non-contrast CT and deep learning
    Cao, Kai
    Xia, Yingda
    Yao, Jiawen
    Han, Xu
    Lambert, Lukas
    Zhang, Tingting
    Tang, Wei
    Jin, Gang
    Jiang, Hui
    Fang, Xu
    Nogues, Isabella
    Li, Xuezhou
    Guo, Wenchao
    Wang, Yu
    Fang, Wei
    Qiu, Mingyan
    Hou, Yang
    Kovarnik, Tomas
    Vocka, Michal
    Lu, Yimei
    Chen, Yingli
    Chen, Xin
    Liu, Zaiyi
    Zhou, Jian
    Xie, Chuanmiao
    Zhang, Rong
    Lu, Hong
    Hager, Gregory D.
    Yuille, Alan L.
    Lu, Le
    Shao, Chengwei
    Shi, Yu
    Zhang, Qi
    Liang, Tingbo
    Zhang, Ling
    Lu, Jianping
    [J]. NATURE MEDICINE, 2023, 29 (12) : 3033 - 3043
  • [9] CTLA-4 positive breast cancer cells suppress dendritic cells maturation and function
    Chen, Xi
    Shao, Qianqian
    Hao, Shengnan
    Zhao, Zhonghua
    Wang, Yang
    Guo, Xiaofan
    He, Ying
    Gao, Wenjuan
    Mao, Haiting
    [J]. ONCOTARGET, 2017, 8 (08) : 13703 - 13715
  • [10] Combined Spiral Transformation and Model-Driven Multi-Modal Deep Learning Scheme for Automatic Prediction of TP53 Mutation in Pancreatic Cancer
    Chen, Xiahan
    Lin, Xiaozhu
    Shen, Qing
    Qian, Xiaohua
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (02) : 735 - 747