Smoothed least absolute deviation estimation methods

被引:0
|
作者
He, Yanfei [1 ]
Xuan, Wenhui [1 ]
Shi, Jianhong [1 ]
Yu, Ping [1 ]
机构
[1] Shanxi Normal Univ, Sch Math & Comp Sci, Taiyuan 030031, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Least absolute deviation; smoothed least absolute deviation; robust estimation; heteroscedasticity;
D O I
10.1080/03610926.2024.2430739
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The estimator of the vector parameter in a linear regression, known as the least absolute deviation (LAD) estimator, is defined by minimizing the sum of the absolute values of the residuals. However, the loss function lacks differentiability. In this study, we propose a convolution-type kernel smoothed least absolute deviation (SLAD) estimator based upon smoothing the objective function within the context of linear regression. Compared with the LAD estimator, the loss function of SLAD estimator is asymptotically differentiable, and the resulting SLAD estimator can yield a lower mean squared error. Furthermore, we demonstrate several interesting asymptotic properties of the SLAD method. Numerical studies and real data analysis confirm that the proposed SLAD method performs remarkably well under finite sample sizes.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Least absolute deviation estimation in structural equation modeling
    Siemsen, Enno
    Bollen, Kenneth A.
    SOCIOLOGICAL METHODS & RESEARCH, 2007, 36 (02) : 227 - 265
  • [2] Multi-sensor bias robust estimation based on recursive approximate least absolute deviation
    Guo Y.-H.
    Wang J.-D.
    Ren W.-F.
    Hu Y.
    Mou J.-M.
    Kongzhi yu Juece/Control and Decision, 2019, 34 (03): : 495 - 502
  • [3] Least absolute deviation method of curve fitting
    Gu L.
    Tongji Daxue Xuebao/Journal of Tongji University, 2011, 39 (09): : 1377 - 1382
  • [4] Bootstrap unit root test based on least absolute deviation estimation under dependence assumptions
    Yang, Xiaorong
    JOURNAL OF APPLIED STATISTICS, 2015, 42 (06) : 1332 - 1347
  • [5] Estimating the fundamental matrix based on least absolute deviation
    Yang, Menglong
    Liu, Yiguang
    You, Zhisheng
    NEUROCOMPUTING, 2011, 74 (17) : 3638 - 3645
  • [6] A maximum likelihood approach to least absolute deviation regression
    Li, YB
    Arce, GR
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2004, 2004 (12) : 1762 - 1769
  • [7] A Maximum Likelihood Approach to Least Absolute Deviation Regression
    Yinbo Li
    Gonzalo R. Arce
    EURASIP Journal on Advances in Signal Processing, 2004
  • [8] A descent method for least absolute deviation lasso problems
    Shi, Yue
    Feng, Zhiguo
    Yiu, Ka Fai Cedric
    OPTIMIZATION LETTERS, 2019, 13 (03) : 543 - 559
  • [9] Robust object tracking using least absolute deviation
    Yan, Jingyu
    Wang, Fuxiang
    Cao, Xianbin
    Zhang, Jun
    IMAGE AND VISION COMPUTING, 2014, 32 (11) : 930 - 939
  • [10] A descent method for least absolute deviation lasso problems
    Yue Shi
    Zhiguo Feng
    Ka Fai Cedric Yiu
    Optimization Letters, 2019, 13 : 543 - 559