Can NiFe-Layered-Double-Hydroxide Catalysts Suppress Carbon Corrosion in Electrochemical Oxygen Evolution?

被引:0
作者
Takaki, Yuki [1 ]
Ishizaki, Manabu [1 ]
Nakamura, Takashi [2 ]
Kurihara, Masato [1 ]
机构
[1] Yamagata Univ, Fac Sci, Yamagata, Yamagata 9908560, Japan
[2] Natl Inst Adv Ind Sci & Technol, Sendai, Miyagi 9838551, Japan
关键词
oxygen evolution reaction; layered doublehydroxide; carbon corrosion; nanodot; Prussianblue; PERFORMANCE;
D O I
10.1021/acsami.4c16113
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Sustainable energy societies demand rechargeable batteries using ubiquitous-material electrodes of geopolitical-risk-free elements. We aim to develop low-overpotential oxygen-evolution-reaction (OER) catalysts that suppress carbon corrosion of gas-diffusion electrodes (GDEs) to realize two-electrode rechargeable Zn-air batteries (r-ZABs). Herein, single-walled-carbon-nanotube (SWNT) thin films are used as a scaffold for a benchmark OER catalyst, doping-free NiFe-layered double hydroxide (NiFeLDHs), operating in r-ZABs using alkali aqueous electrolytes. Metal compositions of NiFeLDHs are controlled with an atomic-level quality using Prussian-blue-analog nanoparticles of Ni x Fe1-x [Fe(CN)6]0.67 (x = 0-1). The nanoparticles with dimensions of similar to 8 nm adhere to SWNTs on carbon paper as a GDE model by a drop-casting method using their aqueous dispersion solutions. Ni0.6Fe0.4[Fe(CN)6]0.67 shows OER activity by hydrolysis for generating NiFeLDH nanodots of metal compositions between Ni0.5Fe0.5 and Ni0.6Fe0.4 with a size distribution of 1.75 +/- 0.26 nm and exposing OER-active (018) and (015) planes on SWNTs. The activity is investigated by regulating the loading amounts of the NPs to avoid aggregating the nanodots. An optimal low-loading amount of 270 nmol cm-2 minimizes iR-corrected overpotential to 156 mV at 10 mA cm-2. The iR-uncorrected overpotential is 260 mV and suppresses carbon corrosion of SWNTs and carbon black. Using an r-ZAB half-cell with a Zn foil, OER-driven charging stably proceeds at 10 mA cm-2 over 3 h with an average voltage of 1.99 V vs Zn/Zn2+. Limited metal electrodes have further improved OER overpotentials by third-element doping, while carbon electrodes still offer room for discovering intrinsically high OER activities of NiFeLDHs without doping.
引用
收藏
页码:70531 / 70543
页数:13
相关论文
共 65 条
[21]   Active Surface Area and Intrinsic Catalytic Oxygen Evolution Reactivity of NiFe LDH at Reactive Electrode Potentials Using Capacitances [J].
Jeon, Sun Seo ;
Kang, Phil Woong ;
Klingenhof, Malte ;
Lee, Hyunjoo ;
Dionigi, Fabio ;
Strasser, Peter .
ACS CATALYSIS, 2023, 13 (02) :1186-1196
[22]   Bimetallic-Based Electrocatalysts for Oxygen Evolution Reaction [J].
Jiang, Jun ;
Zhou, Xiao-Li ;
Lv, Hua-Gang ;
Yu, Han-Qing ;
Yu, Yan .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (10)
[23]   'Total electrode' and 'intrinsic' activity parameters in water electrolysis: a comprehensive investigation [J].
Karmakar, Arun ;
Kamble, Bhagyashri. B. ;
Madhu, Ragunath ;
Gudlur, Pradeep ;
Kundu, Subrata .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (47) :26023-26043
[24]   Binder-Free Heterostructured NiFe2O4/NiFe LDH Nanosheet Composite Electrocatalysts for Oxygen Evolution Reactions [J].
Kashale, Anil Ashok ;
Yi, Chia-Hui ;
Cheng, Kum-Yi ;
Guo, Jhao-Sian ;
Pan, Yu-Han ;
Chen, I-Wen Peter .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (11) :10831-10840
[25]   Electrocatalytic Oxygen Evolution with an Atomically Precise Nickel Catalyst [J].
Kauffman, Douglas R. ;
Alfonso, Dominic ;
Tafen, De Nyago ;
Lekse, Jonathan ;
Wang, Congjun ;
Deng, Xingyi ;
Lee, Junseok ;
Jang, Hoyoung ;
Lee, Jun-sik ;
Kumar, Santosh ;
Matranga, Christopher .
ACS CATALYSIS, 2016, 6 (02) :1225-1234
[26]   Single Nanometer-Sized NiFe-Layered Double Hydroxides as Anode Catalyst in Anion Exchange Membrane Water Electrolysis Cell with Energy Conversion Efficiency of 74.7% at 1.0 A cm-2 [J].
Koshikawa, Hiroyuki ;
Murase, Hideaki ;
Hayashi, Takao ;
Nakajima, Kosuke ;
Mashiko, Hisanori ;
Shiraishi, Seigo ;
Tsuji, Yoichiro .
ACS CATALYSIS, 2020, 10 (03) :1886-1893
[27]   Material design and surface chemistry for advanced rechargeable zinc-air batteries [J].
Lee, Soobeom ;
Choi, Jinyeong ;
Kim, Minsoo ;
Park, Jihan ;
Park, Minjoon ;
Cho, Jaephil .
CHEMICAL SCIENCE, 2022, 13 (21) :6159-6180
[28]   A Review on Advanced FeNi-Based Catalysts for Water Splitting Reaction [J].
Li, Dongze ;
Liu, Hui ;
Feng, Ligang .
ENERGY & FUELS, 2020, 34 (11) :13491-13522
[29]   OER highly active encapsulants to improve the electrochemical anticorrosion of Fe-N-C for ultralong-lifespan and high-rate rechargeable zinc-air batteries [J].
Li, Jiale ;
Huang, Niu ;
Lv, Minghui ;
Su, Na ;
Li, Chao ;
Huang, Yingping ;
Wang, Yongye ;
Zheng, Yong ;
Liu, Wei ;
Ma, Tianyi ;
Ye, Liqun .
EES CATALYSIS, 2023, 1 (06) :987-997
[30]   RuSe2 and CoSe2 Nanoparticles Incorporated Nitrogen-Doped Carbon as Efficient Trifunctional Electrocatalyst for Zinc-Air Batteries and Water Splitting [J].
Li, Lubing ;
Qu, Jingkuo ;
Zhang, Lei ;
Wei, Liting ;
Su, Jinzhan ;
Guo, Liejin .
ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (19) :24660-24670