Confinement-Enhanced Multi-Wavelength Photon Upconversion Based on Triplet-Triplet Annihilation in Nanostructured Glassy Polymers

被引:0
|
作者
Hu, Xueqian [1 ]
Pollice, Luca [2 ]
Ronchi, Alessandra [2 ]
Roccanova, Marco [2 ]
Mauri, Michele [2 ]
Lardani, Davide [1 ]
Vanhecke, Dimitri [1 ]
Monguzzi, Angelo [2 ]
Weder, Christoph [1 ]
机构
[1] Univ Fribourg, Adolphe Merkle Inst, Chemin Verdiers 4, CH-1700 Fribourg, Switzerland
[2] Univ Milano Bicocca, Dipartimento Sci Materiali, Via Roberto Cozzi 55, I-20125 Milan, Italy
基金
瑞士国家科学基金会;
关键词
nanomaterials; polymers; solar harvesting; triplet-triplet annihilation; upconversion; SUBSOLAR IRRADIANCE; ENERGY-TRANSFER; SOLAR-CELL; BAND-GAP; PHOTOSENSITIZERS; NANOCAPSULES; FLUORESCENCE; SILICON; DESIGN;
D O I
10.1002/advs.202415160
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sensitized triplet-triplet annihilation photon upconversion (sTTA-UC) allows blue-shifting non-coherent low-intensity light and is potentially useful in solar-powered devices, bioimaging, 3D printing, and other applications. For technologically viable solar energy harvesting systems, solid materials that capture a large fraction of the solar spectrum and efficiently upconvert the absorbed energy must be developed. Here, it is shown that broadband-to-blue UC is possible in air-tolerant, easy-to-access, nanostructured polymers comprising a rigid hydrophilic matrix and liquid nanodroplets with dimensions on the order of tens of nanometers. The droplets contain 9,10-bis[(triisopropylsilyl)ethynyl] anthracene (TIPS-Ac) as emitter/annihilator and palladium(II) octaethyl porphyrin (PdOEP) and palladium(II) meso-tetraphenyl tetrabenzoporphine (PdTPBP) as sensitizers. The confinement of the three dyes in the liquid domains renders the various bimolecular energy transfer processes that are pivotal for the TIPS-Ac's triplet sensitization highly efficient, and the simultaneous use of multiple light harvesters with triplet energy levels resonant with the emitter/annihilator increases the absorption bandwidth to ca. 150 nm. The UC process at low power densities is most efficient when both sensitizers are simultaneously excited, thanks to their confinement in the nanodroplets, which leads to an increase in the triplet density, and therefore TTA rate and yield, optimizing the use of the harvested energy.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Photon upconversion based on sensitized triplet-triplet annihilation
    Singh-Rachford, Tanya N.
    Castellano, Felix N.
    COORDINATION CHEMISTRY REVIEWS, 2010, 254 (21-22) : 2560 - 2573
  • [2] Triplet-Triplet Annihilation-Based Upconversion in Supramolecular System
    Fan, Hongchuan
    Yang, Dong
    Duan, Pengfei
    PROGRESS IN CHEMISTRY, 2018, 30 (07) : 879 - 887
  • [3] Triplet-Triplet Annihilation Upconversion Based on Silica Nanoparticles
    He Tong
    Yang Xiaofeng
    Chen Yuzhe
    Tong Zhenhe
    Wu Lizhu
    ACTA CHIMICA SINICA, 2019, 77 (01) : 41 - 46
  • [4] Measurement methods for triplet-triplet annihilation photon upconversion
    Luan, Qingxin
    Hou, Lili
    Li, Hongyu
    Wang, Taibin
    Xu, Tianhua
    Ding, Zhenyang
    Jiang, Junfeng
    Liu, Tiegen
    OPTICS CONTINUUM, 2024, 3 (11): : 2078 - 2087
  • [5] Applications and Prospects for Triplet-Triplet Annihilation Photon Upconversion
    Rauch, Martin P.
    Knowles, Robert R.
    CHIMIA, 2018, 72 (7-8) : 501 - 507
  • [6] Triplet-Triplet Annihilation Photon Upconversion in Polymer Thin Film: Sensitizer Design
    Jiang, Xinpeng
    Guo, Xinyan
    Peng, Jiang
    Zhao, Dahui
    Ma, Yuguo
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (18) : 11441 - 11449
  • [7] Benchmarking triplet-triplet annihilation photon upconversion schemes
    Gertsen, Anders S.
    Koerstz, Mads
    Mikkelsen, Kurt V.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (17) : 12182 - 12192
  • [8] Triplet-triplet annihilation-based photon-upconversion to broaden the wavelength spectrum for photobiocatalysis
    Hwang, Se-Yeun
    Song, Dayoon
    Seo, Eun-Ji
    Hollmann, Frank
    You, Youngmin
    Park, Jin-Byung
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [9] Sensitized triplet-triplet annihilation based photon upconversion in full organic and hybrid multicomponent systems
    Ronchi, Alessandra
    Monguzzi, Angelo
    CHEMICAL PHYSICS REVIEWS, 2022, 3 (04):
  • [10] Triplet-triplet annihilation based upconversion in silica matrices
    Massaro, Giuseppina
    Gentili, Pier Luigi
    Ambrogi, Valeria
    Nocchetti, Morena
    Marmottini, Fabio
    Ortica, Fausto
    Latterini, Loredana
    MICROPOROUS AND MESOPOROUS MATERIALS, 2017, 246 : 120 - 129