Superpixel-Based Bipartite Graph Clustering Enriched With Spatial Information for Hyperspectral and LiDAR Data

被引:0
|
作者
Cao, Zhe [1 ]
Lu, Yihang [2 ]
Xin, Haonan [1 ]
Wang, Rong [1 ]
Nie, Feiping [1 ]
Sebilo, Mathieu [2 ]
机构
[1] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Shaanxi, Peoples R China
[2] Sorbonne Univ, Inst Ecol & Environm Sci Paris IEES, F-75005 Paris, France
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2025年 / 63卷
基金
中国国家自然科学基金;
关键词
Hyperspectral imaging; Tensors; Laser radar; Discrete Fourier transforms; Data models; Feature extraction; Land surface; Computational modeling; Clustering algorithms; Bipartite graph; Bipartite graphs; dimensionality reduction (DR); remote sensing (RS); scalable method; spatial information; tensor-based clustering; unsupervised learning;
D O I
10.1109/TGRS.2025.3538632
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The surge in remote sensing (RS) data underscores the need for improved data diversity and processing. While integrating hyperspectral (HS) and light detection and ranging (LiDAR) data enhances analysis and addresses spectral variability, the high dimensionality, noise, and outliers inherent in hyperspectral images present significant challenges. In addition, the precise labeling required for HS makes supervised classification labor-intensive, professional-focused, and time-consuming, further motivating the development of advanced HS clustering algorithms to address these issues. Unsupervised clustering addresses the above issues but still struggles due to the underutilization of auxiliary spatial and structural information, high data dimensionality with redundant hyperspectral bands, and information divergence from heterogeneity among multimodal data. These challenges impede the effective extraction of consistent structures, undermining clustering stability and overall model performance. To address these challenges, we propose a superpixel-based bipartite graph clustering (SBGC) enriched with spatial information for hyperspectral and LiDAR data models. Our proposed method fully utilizes spatial information to construct meaningful bipartite graphs for the efficient processing of multimodal RS data. By adopting a projected clustering paradigm, our approach simultaneously clusters and reduces dimensionality, effectively eliminating redundant bands. In addition, it innovatively stacks multimodal data into tensors, thoroughly exploring the consistent structures in the low-rank space among different modalities. This reduces the heterogeneity-induced information divergence and significantly enhances clustering performance. Extensive experiments on real datasets confirm the method's effectiveness and advanced capabilities.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Drill-Core Hyperspectral and Geochemical Data Integration in a Superpixel-Based Machine Learning Framework
    Acosta, Isabel Cecilia Contreras
    Khodadadzadeh, Mahdi
    Tolosana-Delgado, Raimon
    Gloaguen, Richard
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 4214 - 4228
  • [22] Superpixel-Level Global and Local Similarity Graph-Based Clustering for Large Hyperspectral Images
    Zhao, Haishi
    Zhou, Fengfeng
    Bruzzone, Lorenzo
    Guan, Renchu
    Yang, Chen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [23] Superpixel Spectral-Spatial Feature Fusion Graph Convolution Network for Hyperspectral Image Classification
    Gong, Zhi
    Tong, Lei
    Zhou, Jun
    Qian, Bin
    Duan, Lijuan
    Xiao, Chuangbai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [24] Superpixel-Based Noise-Robust Sparse Unmixing of Hyperspectral Image
    Li, Chang
    Sui, Chenhong
    Song, Rencheng
    Cheng, Juan
    Liu, Yu
    Chen, Xun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [25] Robust hyperspectral image clustering integrating total Bregman divergence and bipartite graph
    Liu H.
    Wu C.
    Li C.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (10): : 1749 - 1759
  • [26] Superpixel-Based Graph Laplacian Regularized and Weighted Robust Sparse Unmixing
    Zou, Xin
    Xu, Mingming
    Liu, Shanwei
    Sheng, Hui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [27] Multiscale Superpixel-Based Hyperspectral Image Classification Using Recurrent Neural Networks With Stacked Autoencoders
    Shi, Cheng
    Pun, Chi-Man
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (02) : 487 - 501
  • [28] SuperBF: Superpixel-Based Bilateral Filtering Algorithm and Its Application in Feature Extraction of Hyperspectral Images
    Chen, Zhikun
    Jiang, Junjun
    Zhou, Chong
    Fu, Shaoyuan
    Cai, Zhihua
    IEEE ACCESS, 2019, 7 : 147796 - 147807
  • [29] Superpixel-Based Relaxed Collaborative Representation With Band Weighting for Hyperspectral Image Classification
    Su, Hongjun
    Gao, Yihan
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [30] Multiview Feature Learning and Multilevel Information Fusion for Joint Classification of Hyperspectral and LiDAR Data
    Feng, Jia
    Zhang, Junping
    Zhang, Ye
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61