A Hybrid Transformer-based Spatial-Temporal Network for Traffic Flow Prediction

被引:0
|
作者
Tian, Guanqun [1 ]
Li, Dequan [1 ]
机构
[1] Anhui Univ Sci & Technol, Sch Artificial Intelligence, Huainan, Peoples R China
来源
2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024 | 2024年
关键词
Traffic flow prediction; Spatial-temporal correlations; Transformer; Exponential smoothing attention; REGRESSION;
D O I
10.1109/ICIEA61579.2024.10664852
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic flow prediction has garnered increasing attention in the field of Intelligent Transportation Systems (ITS). Therefore, accurate prediction models are essential for enabling traffic management authorities to guide vehicles more efficiently through the road network. Existing works have employed innovative methods to tackle the traffic prediction problem efficaciously, but the modeling of spatial-temporal correlations in traffic networks and flow data has shown limited effectiveness. Consequently, there is a significant discrepancy between the predicted outcomes and real-world scenarios. In this paper, we introduces a novel deep learning model called the Spatial-Temporal Exponential Smoothing Hybrid Transformer Network (STESHTN) for addressing the traffic flow prediction problem. STESHTN effectively captures both temporal and spatial dependencies. In the temporal dimension, we employ temporal exponential smoothing attention and multi-head self-attention to exploit the temporal associations present in traffic time-series data. In the spatial dimension, we utilize multiple graphs to construct the traffic road network. Our model's superior performance is demonstrated through experiments conducted on four real-world datasets, PEMS03, PEMS04, PEMS07, and PEMS08.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] AGCN-T: A Traffic Flow Prediction Model for Spatial-Temporal Network Dynamics
    Feng, Jian
    Yu, Lang
    Ma, Rui
    JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [42] Multi-level spatial-temporal fusion neural network for traffic flow prediction
    Peng, Zhiying
    Yang, Yixue
    Zhao, Hao
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (05): : 6689 - 6702
  • [43] Spatial-Temporal Attention Graph Convolution Network on Edge Cloud for Traffic Flow Prediction
    Lai, Qifeng
    Tian, Jinyu
    Wang, Wei
    Hu, Xiping
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 4565 - 4576
  • [44] Attention-Based Spatial-Temporal Fusion Networks for Traffic Flow Prediction
    Wang, Jiaying
    Yang, Heng
    Shan, Jing
    Jiang, Junyi
    Song, Xiaoxu
    WEB INFORMATION SYSTEMS AND APPLICATIONS, WISA 2024, 2024, 14883 : 500 - 511
  • [45] Dynamic Spatial-Temporal Representation Learning for Traffic Flow Prediction
    Liu, Lingbo
    Zhen, Jiajie
    Li, Guanbin
    Zhan, Geng
    He, Zhaocheng
    Du, Bowen
    Lin, Liang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (11) : 7169 - 7183
  • [46] A Spatial-Temporal Gated Hypergraph Convolution Network for Traffic Prediction
    Cao, Shuqin
    Wu, Libing
    Zhang, Rui
    Chen, Yanjiao
    Li, Jianxin
    Liu, Qin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (07) : 9546 - 9559
  • [47] Attention Based Spatial-Temporal Dynamic Interact Network for Traffic Flow Forecasting
    Xie, Junwei
    Ge, Liang
    Li, Haifeng
    Lin, Yiping
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT IV, 2024, 14450 : 445 - 457
  • [48] Capturing Local and Global Spatial-Temporal Correlations of Spatial-Temporal Graph Data for Traffic Flow Prediction
    Cao, Shuqin
    Wu, Libing
    Zhang, Rui
    Li, Jianxin
    Wu, Dan
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [49] DenseNet-Transformer: A deep learning method for spatial-temporal traffic prediction in optical fronthaul network
    Qin, Xin
    Zhu, Wenwu
    Hu, Qian
    Zhou, Zexi
    Ding, Yi
    Gao, Xia
    Gu, Rentao
    COMPUTER NETWORKS, 2024, 253
  • [50] Dynamic Spatial-Temporal Memory Augmentation Network for Traffic Prediction
    Zhang, Huibing
    Xie, Qianxin
    Shou, Zhaoyu
    Gao, Yunhao
    SENSORS, 2024, 24 (20)