Binder-free tin (IV) oxide coated vertically aligned carbon nanotubes as anode for lithium-ion batteries

被引:1
作者
Thapa, Arun [1 ,3 ]
Baboukani, Amin Rabiei [2 ]
Siwakoti, Prahald [4 ]
Jungjohann, Katherine L. [5 ]
Nwanno, Chinaza E. [1 ]
Zhang, Jiandi [4 ]
Wang, Chunlei [2 ]
Gao, Hongwei [3 ]
Li, Wenzhi [1 ]
机构
[1] Florida Int Univ, Dept Phys, Miami, FL 33199 USA
[2] Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33174 USA
[3] Montana State Univ, Dept Elect & Comp Engn, Bozeman, MT 59717 USA
[4] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[5] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA
基金
美国国家科学基金会;
关键词
Lithium-ion batteries (LIBs); Vertically aligned CNTs; SnO; 2; nanoparticles; Binder-free anode; Electrochemical impedance spectroscopy (EIS); LI-ION; SNO2; NANOPARTICLES; SONOCHEMICAL SYNTHESIS; NATURAL GRAPHITE; DIRECT GROWTH; STORAGE; COMPOSITES; ELECTRODE; SPECTROSCOPY; STABILITY;
D O I
10.1016/j.jpowsour.2024.235697
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite the tremendous potential of tin oxide (SnO2) as an anode material, irreversible capacity loss due to the sluggish kinetics and structural pulverization as a result of the substantial volume alteration during redox reactions limits its use in lithium-ion batteries. The typical layered design of an electrode consisting of binder and conductive additive can lower the practical capacity of high-capacity electrode materials. We synthesized a binder and conductive additive-free, self-standing core-shell vertically-aligned carbon nanotubes (VACNTs)-SnO2 anode (SnO2-VACNTs) on 3D nickel foam using plasma-enhanced chemical vapor deposition and wet chemical method. The SnO2-VACNTs exhibited excellent cyclability with a specific capacity of 1512 mAh g- 1 at 0.1 A g- 1 after 100 cycles and 800 mAh g- 1 at 1 A g- 1 after 200 cycles. The ultra-fine SnO2 particles (<5 nm) shortened the Li+ diffusion paths into the bulk electrode and alleviated the volume alteration by lowering the strains during the redox reactions. Also, proper inter-tube distance between individual SnO2-VACNTs buffered the volume instability and offered better electrolyte accessibility. Direct connection of VACNTs with the current collector ensured an uninterrupted electron conducting path between the current collector and active material, thus of- fering more efficient charge transportation kinetics at the electrode/electrolyte interfaces.
引用
收藏
页数:16
相关论文
共 91 条
[1]   Chemically functionalized carbon nanotubes [J].
Balasubramanian, K ;
Burghard, M .
SMALL, 2005, 1 (02) :180-192
[2]   Thin-film crystalline SnO2-lithium electrodes [J].
Brousse, T ;
Retoux, R ;
Herterich, U ;
Schleich, DM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) :1-4
[3]   Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries [J].
Bulusheva, L. G. ;
Okotrub, A. V. ;
Kurenya, A. G. ;
Zhang, Hongkun ;
Zhang, Huijuan ;
Chen, Xiaohong ;
Song, Huaihe .
CARBON, 2011, 49 (12) :4013-4023
[4]   A review on energy chemistry of fast-charging anodes [J].
Cai, Wenlong ;
Yao, Yu-Xing ;
Zhu, Gao-Long ;
Yan, Chong ;
Jiang, Li-Li ;
He, Chuanxin ;
Huang, Jia-Qi ;
Zhang, Qiang .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (12) :3806-3833
[5]   In -situ thermally fabricated porous and heterogeneous yolk -shell selenides wrapped in carbon as anode for high-performance hybrid lithium -ion capacitors [J].
Chen, Daming ;
Sun, Shangqi ;
Yu, Genxi ;
Qin, Liguang ;
Wang, Weijuan ;
Jiang, Mingyue ;
Chen, Jian .
CARBON, 2020, 166 :91-100
[6]   Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes [J].
Chen, Kuan-Hung ;
Wood, Kevin N. ;
Kazyak, Eric ;
LePage, William S. ;
Davis, Andrew L. ;
Sanchez, Adrian J. ;
Dasgupta, Neil P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (23) :11671-11681
[7]   Multi-yolk-shell copper oxide@carbon octahedra as high-stability anodes for lithium-ion batteries [J].
Chen, Tao ;
Hu, Yi ;
Cheng, Baorui ;
Chen, Renpeng ;
Lv, Hongling ;
Ma, Lianbo ;
Zhu, Guoyin ;
Wang, Yanrong ;
Yan, Changzeng ;
Tie, Zuoxiu ;
Jin, Zhong ;
Liu, Jie .
NANO ENERGY, 2016, 20 :305-314
[8]   In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-Ion Storage [J].
Chen, Zhongxue ;
Zhou, Min ;
Cao, Yuliang ;
Ai, Xinping ;
Yang, Hanxi ;
Liu, Jun .
ADVANCED ENERGY MATERIALS, 2012, 2 (01) :95-102
[9]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052
[10]   Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties [J].
Demir-Cakan, Rezan ;
Hu, Yong-Sheng ;
Antonietti, Markus ;
Maier, Joachim ;
Titirici, Maria-Magdalena .
CHEMISTRY OF MATERIALS, 2008, 20 (04) :1227-1229