A state of health estimation method for lithium-ion batteries based on initial charging segment and Gated Recurrent Unit neural network

被引:0
|
作者
Xie, Yu [1 ]
Luo, Kai [1 ]
Zheng, Lihan [1 ]
Zheng, Huiru [2 ]
Santos, Jose [2 ]
Alodhayb, Abdullah N. [3 ]
Chen, Ping [4 ,5 ]
Shi, Zhicong [1 ]
机构
[1] Guangdong Univ Technol, Inst Batteries, Sch Mat & Energy, Guangzhou 510006, Peoples R China
[2] Ulster Univ, Sch Comp, Belfast BT15 1ED, North Ireland
[3] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
[4] BST Power Shenzhen Ltd, Shenzhen 518000, Peoples R China
[5] Hengyang BST Power Ltd, Hengyang 421000, Peoples R China
关键词
Lithium-ion batteries; State-of-health estimation; Deep learning; Gated Recurrent Unit;
D O I
10.1016/j.jpowsour.2025.236607
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the recent shortage of fossil energy and the escalating severity of environmental issues, electrochemical energy storage has emerged as a developing field. The widely used lithium-ion battery (LIB) is renowned for its exceptional performance. However, its safety concerns have garnered increasing attention. Accurate prediction of the state of health (SOH) of LIBs is crucial in mitigating safety accidents. In this study, the SOH of LIBs is predicted by selecting the initial charging segment data as features of a deep learning NN processed using dQ/dV. The processing results provide insights into the phase transformation process and aging information of both anode and cathode materials, which exhibit strong correlations with the aging behaviour of LIBs. Gated Recurring Unit (GRU) are then used to estimate SOH of LIBs. After applying dQ/dV processing to the data, the determination coefficients R2 for complete charging segments in three datasets increase from 0.79, 0.47, and 0.83 to 0.96, 0.97, and 0.99, respectively. By replacing Long Short-Term Memory (LSTM) with GRU, R2 values for the first 2 min of dataset 1 and dataset 2 improve from 0.32 to 0.37 to 0.93 and 0.80, which means that the use of GRU can substantially improve the prediction accuracy even though the data segment coverage time is short. This approach not only improves the estimation accuracy, but makes the entire work more interpretable and possible for application.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] State-of-Charge Estimation of Lithium-Ion Batteries in the Battery Degradation Process Based on Recurrent Neural Network
    Li, Shuqing
    Ju, Chuankun
    Li, Jianliang
    Fang, Ri
    Tao, Zhifei
    Li, Bo
    Zhang, Tingting
    ENERGIES, 2021, 14 (02)
  • [32] A state of health estimation method of lithium-ion batteries based on DT-IC-V health features extracted from partial charging segment
    Tian, Aina
    Yang, Chen
    Gao, Yang
    Li, Taiyu
    Wang, Lujun
    Chang, Chun
    Jiang, Jiuchun
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2023, 20 (09) : 997 - 1011
  • [33] A vision transformer-based deep neural network for state of health estimation of lithium-ion batteries
    Chen, Liping
    Xie, Siqiang
    Lopes, Antonio M.
    Bao, Xinyuan
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 152
  • [34] A data-driven method based on recurrent neural network method for online capacity estimation of lithium-ion batteries
    Khaleghi, Sahar
    Beheshti, S. Hamidreza
    Berecibar, Maitane
    Van Mierlo, Joeri
    2020 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2020,
  • [35] State of Charge Estimation for Lithium-Ion Batteries Based on NARX Neural Network and UKF
    Qin, Xiaohan
    Gao, Mingyu
    He, Zhiwei
    Liu, Yuanyuan
    2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 1706 - 1711
  • [36] A novel remaining useful life prediction method based on gated recurrent unit network optimized by tunicate swarm algorithm for lithium-ion batteries
    Zhai, Qianchun
    Sun, Jing
    Shang, Yunlong
    Wang, Haofan
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2024,
  • [37] Lithium-ion Battery State of Charge Estimation Based on Gated Recurrent Unit Encoder-decoder
    Liu K.
    Kang L.
    Yue R.
    Xie D.
    Dianwang Jishu/Power System Technology, 2024, 48 (05): : 2161 - 2169
  • [38] State-of-health estimation of lithium-ion battery based on convolutional-gated recurrent neural network with self-attention mechanism
    Chen, Zewang
    Xu, Zhaofan
    Wang, Hanrui
    Shi, Na
    Yang, Lin
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2024, 21 (12) : 2898 - 2911
  • [39] A Novel Auto-LSTM-Based State of Health Estimation Method for Lithium-Ion Batteries
    Wen, Long
    Bo, Nan
    Ye, Xingchen
    Li, Xinyu
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2021, 18 (03)
  • [40] A hybrid neural network model with attention mechanism for state of health estimation of lithium-ion batteries
    Tang, Aihua
    Jiang, Yihan
    Yu, Quanqing
    Zhang, Zhigang
    JOURNAL OF ENERGY STORAGE, 2023, 68