Detection of Pipe Ruptures in Shipboard Firefighting Systems Using Machine Learning and Deep Learning Techniques

被引:0
|
作者
Ferreno-Gonzalez, Sara [1 ]
Diaz-Casas, Vicente [1 ]
Miguez-Gonzalez, Marcos [1 ]
San-Gabino, Carlos G. [2 ]
机构
[1] Univ A Coruna, Naval Engn Dept, Ferrol 15403, Spain
[2] Navantia SA, Ferrol 15403, Spain
来源
APPLIED SCIENCES-BASEL | 2025年 / 15卷 / 03期
关键词
anomaly detection; failure detection; pressure monitoring; FiFi system; machine learning; deep learning; neural network; LEAKAGE DETECTION; FAULT-DIAGNOSIS; MODEL; LOCALIZATION; NETWORKS; WAVELET;
D O I
10.3390/app15031181
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, the application of machine learning and deep learning algorithms for fault and failure detection in maritime systems is examined, specifically focusing on the detection of pipe ruptures in a ship's saltwater firefighting (FiFi) system using pressure sensor data. Neural network models were developed to distinguish between normal operational states and anomalies, as well as to accurately locate pipe faults within the ship. Data were collected using real-world tests with FiFi system sensors, capturing both normal operations and simulated pipe ruptures, and were meticulously labeled to facilitate neural network training. Two neural network models were introduced: one for classifying system states (normal or anomalous) based on time-series pressure data, and another for identifying the location of anomalies related to pipe ruptures. Experimental results demonstrated the efficacy of these models in detecting and localizing pipe faults, with performance evaluated using mean squared error (MSE) across different network configurations. The successful implementation of these machine learning and deep learning algorithms highlights their potential for enhancing maritime safety and operational efficiency.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Gap, techniques and evaluation: traffic flow prediction using machine learning and deep learning
    Razali, Noor Afiza Mat
    Shamsaimon, Nuraini
    Ishak, Khairul Khalil
    Ramli, Suzaimah
    Amran, Mohd Fahmi Mohamad
    Sukardi, Sazali
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [32] Machine learning and deep learning methods for intrusion detection systems: recent developments and challenges
    Kocher, Geeta
    Kumar, Gulshan
    SOFT COMPUTING, 2021, 25 (15) : 9731 - 9763
  • [33] Learning style detection in E-learning systems using machine learning techniques
    Rasheed, Fareeha
    Wahid, Abdul
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 174
  • [34] Firefighting robot with deep learning and machine vision
    Amit Dhiman
    Neel Shah
    Pranali Adhikari
    Sayali Kumbhar
    Inderjit Singh Dhanjal
    Ninad Mehendale
    Neural Computing and Applications, 2022, 34 : 2831 - 2839
  • [35] Phishing URL Detection Using Machine Learning and Deep Learning
    Ferdaws, Rawshon
    Majd, Nahid Ebrahimi
    2024 IEEE 5TH ANNUAL WORLD AI IOT CONGRESS, AIIOT 2024, 2024, : 0485 - 0490
  • [36] Review on chest pathogies detection systems using deep learning techniques
    Rehman, Arshia
    Khan, Ahmad
    Fatima, Gohar
    Naz, Saeeda
    Razzak, Imran
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (11) : 12607 - 12653
  • [37] Leaf disease detection using machine learning and deep learning: Review and challenges
    Sarkar, Chittabarni
    Gupta, Deepak
    Gupta, Umesh
    Hazarika, Barenya Bikash
    APPLIED SOFT COMPUTING, 2023, 145
  • [38] Review of bankruptcy prediction using machine learning and deep learning techniques
    Qu, Yi
    Quan, Pei
    Lei, Minglong
    Shi, Yong
    7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE, 2019, 162 : 895 - 899
  • [39] Ransomware Detection and Classification Using Machine Learning and Deep Learning
    Ouerdi, Noura
    Mejjout, Brahim
    Laaroussi, Khadija
    Kasmi, Mohammed Amine
    ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024, 2024, 11 : 194 - 201
  • [40] Evaluation of Different Machine Learning and Deep Learning Techniques for Hate Speech Detection
    Shawkat, Nabil
    Saquer, Jamil
    Shatnawi, Hazim
    PROCEEDINGS OF THE 2024 ACM SOUTHEAST CONFERENCE, ACMSE 2024, 2024, : 253 - 258