Bifurcations and exact solutions of generalized nonlinear Schrodinger equation

被引:0
|
作者
Zhang, Qian [1 ]
Ke, Ai [2 ]
机构
[1] Southwest Univ Sci & Technol, Sch Math & Phys, Mianyang 621010, Sichuan, Peoples R China
[2] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Zhejiang, Peoples R China
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 03期
基金
中国国家自然科学基金;
关键词
solitary wave; periodic wave; peakon; periodic peakon; traveling wave system; DIFFERENTIAL GROUP DELAY; OPTICAL SOLITONS; KUDRYASHOVS MODEL;
D O I
10.3934/math.2025237
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To find the exact explicit solutions of the generalized nonlinear Schro<spacing diaeresis>dinger equation, we first give the corresponding differential system for the amplitude component, which constitutes a planar dynamical system featuring a singular straight line. By analyzing its corresponding traveling wave system, we can derive the dynamical behavior of the amplitude component and give the corresponding phase portraits. Under different parameter conditions, we obtain exact explicit solitary wave solutions, periodic wave solutions, as well as peakons and periodic peakons. By comparing our results with previous studies on the generalized nonlinear Schro<spacing diaeresis>dinger equation, we correct the error regarding the first integral and present accurate solutions to the equation.
引用
收藏
页码:5158 / 5172
页数:15
相关论文
共 50 条
  • [41] Exact traveling wave solutions to the nonlinear Schrodinger equation
    Abdoulkary, Saidou
    Mohamadou, Alidou
    Beda, Tibi
    Gambo, Betchewe
    Doka, Serge Y.
    Alim
    Mahamoudou, Aboubakar
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 109 - 115
  • [43] Exact Solutions of the Higher Order Nonlinear Schrodinger Equation
    Luo, Tianqi
    Huang, Xin
    PROCEEDINGS OF 2016 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2016, : 19 - 22
  • [44] Exact solutions to nonlinear Schrodinger equation with variable coefficients
    Liu, Yang
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 5866 - 5869
  • [45] Coupled Nonlinear Schrodinger Equation: Symmetries and Exact Solutions
    Liu Ping
    Lou Sen-Yue
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (01) : 27 - 34
  • [46] Exact solutions of the fractional resonant nonlinear Schrodinger equation
    Xu, Yongming
    Feng, Yuqiang
    Jiang, Jun
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (13)
  • [47] Bifurcations and exact solutions for a nonlinear surface wind waves equation
    Xie, Yongan
    Tang, Shengqiang
    Zhong, Liyan
    Chen, Ai-yong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (06) : 1289 - 1297
  • [48] Nonlinear Schrodinger equation from generalized exact uncertainty principle
    Rudnicki, Lukasz
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (37)
  • [49] EXACT DARK SOLITON SOLUTION OF THE GENERALIZED NONLINEAR SCHRODINGER EQUATION
    Zhang, Yi
    Cai, Xiao-Na
    Yao, Cai-Zhen
    Xu, Hong-Xian
    MODERN PHYSICS LETTERS B, 2009, 23 (24): : 2869 - 2888
  • [50] Exact explicit solutions of the nonlinear Schrodinger equation coupled to the Boussinesq equation
    Yao, RX
    Li, ZB
    ACTA MATHEMATICA SCIENTIA, 2003, 23 (04) : 453 - 460