Bifurcations and exact solutions of generalized nonlinear Schrodinger equation

被引:0
|
作者
Zhang, Qian [1 ]
Ke, Ai [2 ]
机构
[1] Southwest Univ Sci & Technol, Sch Math & Phys, Mianyang 621010, Sichuan, Peoples R China
[2] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Zhejiang, Peoples R China
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 03期
基金
中国国家自然科学基金;
关键词
solitary wave; periodic wave; peakon; periodic peakon; traveling wave system; DIFFERENTIAL GROUP DELAY; OPTICAL SOLITONS; KUDRYASHOVS MODEL;
D O I
10.3934/math.2025237
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To find the exact explicit solutions of the generalized nonlinear Schro<spacing diaeresis>dinger equation, we first give the corresponding differential system for the amplitude component, which constitutes a planar dynamical system featuring a singular straight line. By analyzing its corresponding traveling wave system, we can derive the dynamical behavior of the amplitude component and give the corresponding phase portraits. Under different parameter conditions, we obtain exact explicit solitary wave solutions, periodic wave solutions, as well as peakons and periodic peakons. By comparing our results with previous studies on the generalized nonlinear Schro<spacing diaeresis>dinger equation, we correct the error regarding the first integral and present accurate solutions to the equation.
引用
收藏
页码:5158 / 5172
页数:15
相关论文
共 50 条
  • [31] Exact solutions to nonlinear Schrodinger equation and higher-order nonlinear Schrodinger equation
    Ren Ji
    Ruan Hang-Yu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (03) : 575 - 578
  • [32] Exact traveling wave solutions and bifurcations of the generalized derivative nonlinear Schrödinger equation
    Temesgen Desta Leta
    Jibin Li
    Nonlinear Dynamics, 2016, 85 : 1031 - 1037
  • [33] Exact solution of a generalized nonlinear Schrodinger equation dimer
    Christiansen, PL
    Maniadis, P
    Tsironis, GP
    PHYSICA SCRIPTA, 1998, 57 (02): : 192 - 194
  • [34] AN EXACT SOLUTION OF A GENERALIZED NONLINEAR SCHRODINGER-EQUATION
    STENFLO, L
    YU, MY
    SHUKLA, PK
    PHYSICA SCRIPTA, 1989, 40 (03): : 257 - 258
  • [35] Exact self-similar solutions of the generalized nonlinear schrodinger equation with distributed coefficients
    Kruglov, VI
    Peacock, AC
    Harvey, JD
    PHYSICAL REVIEW LETTERS, 2003, 90 (11)
  • [36] Bifurcation, exact solutions and nonsmooth behavior of solitary waves in the generalized nonlinear Schrodinger equation
    Wang, W
    Sun, JH
    Chen, GR
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (10): : 3295 - 3305
  • [37] Solutions, bifurcations and chaos of the nonlinear Schrodinger equation with weak damping
    Peng, JH
    Tang, JS
    Yu, DJ
    Yan, JR
    Hai, WH
    CHINESE PHYSICS, 2002, 11 (03): : 213 - 217
  • [38] On the exact solutions of nonlinear Schrodinger equation with spin current
    Saravanan, M.
    Dhamayanthi, S.
    CHINESE JOURNAL OF PHYSICS, 2017, 55 (01) : 79 - 84
  • [39] Exact solutions of the saturable discrete nonlinear Schrodinger equation
    Khare, A
    Rasmussen, KO
    Samuelsen, MR
    Saxena, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (04): : 807 - 814
  • [40] Direct search for exact solutions to the nonlinear Schrodinger equation
    Ma, Wen-Xiu
    Chen, Min
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (08) : 2835 - 2842