Bifurcations and exact solutions of generalized nonlinear Schrodinger equation

被引:0
|
作者
Zhang, Qian [1 ]
Ke, Ai [2 ]
机构
[1] Southwest Univ Sci & Technol, Sch Math & Phys, Mianyang 621010, Sichuan, Peoples R China
[2] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Zhejiang, Peoples R China
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 03期
基金
中国国家自然科学基金;
关键词
solitary wave; periodic wave; peakon; periodic peakon; traveling wave system; DIFFERENTIAL GROUP DELAY; OPTICAL SOLITONS; KUDRYASHOVS MODEL;
D O I
10.3934/math.2025237
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To find the exact explicit solutions of the generalized nonlinear Schro<spacing diaeresis>dinger equation, we first give the corresponding differential system for the amplitude component, which constitutes a planar dynamical system featuring a singular straight line. By analyzing its corresponding traveling wave system, we can derive the dynamical behavior of the amplitude component and give the corresponding phase portraits. Under different parameter conditions, we obtain exact explicit solitary wave solutions, periodic wave solutions, as well as peakons and periodic peakons. By comparing our results with previous studies on the generalized nonlinear Schro<spacing diaeresis>dinger equation, we correct the error regarding the first integral and present accurate solutions to the equation.
引用
收藏
页码:5158 / 5172
页数:15
相关论文
共 50 条
  • [21] Exact Solutions for the Generalized Derivative Schrodinger Equation
    Zhang, Yuanyuan
    HIS 2009: 2009 NINTH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS, VOL 3, PROCEEDINGS, 2009, : 478 - 480
  • [22] Asymptotically exact parabolic solutions of the generalized nonlinear Schrodinger equation with varying parameters
    Kruglov, Vladimir I.
    Harvey, John D.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2006, 23 (12) : 2541 - 2550
  • [23] Abundant exact solutions to a generalized nonlinear Schrodinger equation with local fractional derivative
    Ghanbari, Behzad
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (11) : 8759 - 8774
  • [24] Exact Solutions of Nonlinear Schrodinger's Equation by using Generalized Kudryashov Method
    Pandir, Yusuf
    Sonmezoglu, Abdullah
    Duzgun, Hasan Huseyin
    Turhan, Nail
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [25] DIMENSIONAL REDUCTIONS AND EXACT-SOLUTIONS OF A GENERALIZED NONLINEAR SCHRODINGER-EQUATION
    CLARKSON, PA
    NONLINEARITY, 1992, 5 (02) : 453 - 472
  • [26] Exact solutions of a nonlocal nonlinear Schrodinger equation
    Gao, Hui
    Xu, Tianzhou
    Yang, Shaojie
    Wang, Gangwei
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2016, 10 (9-10): : 651 - 657
  • [27] The exact solutions for a nonisospectral nonlinear Schrodinger equation
    Ning, Tong-ke
    Zhang, Weiguo
    Jia, Gao
    CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 1100 - 1105
  • [28] Exact solutions of a nonpolynomially nonlinear Schrodinger equation
    Parwani, R.
    Tan, H. S.
    PHYSICS LETTERS A, 2007, 363 (03) : 197 - 201
  • [29] Exact solutions to the focusing nonlinear Schrodinger equation
    Aktosun, Tuncay
    Demontis, Francesco
    van der Mee, Cornelis
    INVERSE PROBLEMS, 2007, 23 (05) : 2171 - 2195
  • [30] Symmetries for exact solutions to the nonlinear Schrodinger equation
    Aktosun, Tuncay
    Busse, Theresa
    Demontis, Francesco
    van der Mee, Cornelis
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (02)