Regret Analysis of Shrinking Horizon Model Predictive Control

被引:0
|
作者
Ambrosino, Michele [1 ]
Castroviejo-Fernandez, Miguel [1 ]
Leung, Jordan [1 ]
Kolmanovsky, Ilya [1 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
来源
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME | 2025年 / 147卷 / 02期
关键词
model predictive control; constrained control; regret analysis; numerical methods for optimal control; STABILITY;
D O I
10.1115/1.4066317
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper analyzes the suboptimal implementation of shrinking horizon model predictive control (SHMPC) when a fixed number of solver iterations and a warm-start are utilized at each time-step to solve the underlying optimal control problem (OCP). We derive bounds on the loss of performance (regret) and on the difference between suboptimal SHMPC and optimal solutions. This analysis provides insights and practical guidelines for the implementation of SHMPC under computational limitations. A numerical example of axisymmetric spacecraft spin stabilization is reported. The suboptimal implementation of SHMPC is shown to be capable of steering the system from an initial state into a known terminal set while satisfying control constraints.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Stability Analysis of Classic Finite Horizon Model Predictive Control
    Chen, Wen-Hua
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2010, 8 (02) : 187 - 197
  • [2] Stability analysis of classic finite horizon model predictive control
    Wen-Hua Chen
    International Journal of Control, Automation and Systems, 2010, 8 : 187 - 197
  • [3] Robust Parametric Shrinking Horizon Model Predictive Control and its Application to Spacecraft Rendezvous
    Castroviejo-Fernandez, Miguel
    Ambrosino, Michele
    Kolmanovsky, Ilya
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 2781 - 2786
  • [4] An infinite horizon model predictive control for stable and integrating processes
    Rodrigues, MA
    Odloak, D
    COMPUTERS & CHEMICAL ENGINEERING, 2003, 27 (8-9) : 1113 - 1128
  • [5] Shrinking horizon parametrized predictive control with application to energy-efficient train operation
    Farooqi, Hafsa
    Fagiano, Lorenzo
    Colaneri, Patrizio
    Barlini, Davide
    AUTOMATICA, 2020, 112
  • [6] Active set prediction for nonlinear model predictive control on a shrinking horizon based on the principle of optimality
    Dyrska, Raphael
    Moennigmann, Martin
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2024, 34 (04) : 2768 - 2780
  • [7] Efficient Train Operation via Shrinking Horizon Parametrized Predictive Control
    Farooqi, Hafsa
    Fagiano, Lorenzo
    Colaneri, Patrizio
    IFAC PAPERSONLINE, 2018, 51 (20): : 203 - 208
  • [8] Embedded Nonlinear Model Predictive Control of Dual-Clutch Transmissions With Multiple Groups on a Shrinking Horizon
    Mesmer, Felix
    Szabo, Tomas
    Graichen, Knut
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (05) : 2156 - 2168
  • [9] Infinite horizon model predictive control with no terminal constraint
    Marjanovic, O
    Lennox, B
    COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (12) : 2605 - 2610
  • [10] Adaptive Horizon Model Predictive Control
    Krener, Arthur J.
    IFAC PAPERSONLINE, 2018, 51 (13): : 31 - 36