Predicting cardiovascular disease in patients with mental illness using machine learning

被引:0
作者
Bernstorff, Martin [1 ,2 ,3 ]
Hansen, Lasse [1 ,2 ,3 ]
Olesen, Kevin Kris Warnakula [4 ]
Danielsen, Andreas Aalkjaer [1 ,2 ]
Ostergaard, Soren Dinesen [1 ,2 ]
机构
[1] Aarhus Univ Hosp, Dept Affect Disorders, Psychiat, Aarhus, Denmark
[2] Aarhus Univ, Dept Clin Med, Aarhus, Denmark
[3] Aarhus Univ, Ctr Humanities Comp, Aarhus, Denmark
[4] Aarhus Univ Hosp, Dept Cardiol, Aarhus, Denmark
关键词
artificial intelligence; cardiovascular diseases; psychiatry; precision medicine; SCHIZOPHRENIA; RISK; NATIONWIDE; PEOPLE; DISORDERS; MORTALITY; ADULTS;
D O I
10.1192/j.eurpsy.2025.1
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Background Cardiovascular disease (CVD) is twice as prevalent among individuals with mental illness compared to the general population. Prevention strategies exist but require accurate risk prediction. This study aimed to develop and validate a machine learning model for predicting incident CVD among patients with mental illness using routine clinical data from electronic health records.Methods A cohort study was conducted using data from 74,880 patients with 1.6 million psychiatric service contacts in the Central Denmark Region from 2013 to 2021. Two machine learning models (XGBoost and regularised logistic regression) were trained on 85% of the data from six hospitals using 234 potential predictors. The best-performing model was externally validated on the remaining 15% of patients from another three hospitals. CVD was defined as myocardial infarction, stroke, or peripheral arterial disease.Results The best-performing model (hyperparameter-tuned XGBoost) demonstrated acceptable discrimination, with an area under the receiver operating characteristic curve of 0.84 on the training set and 0.74 on the validation set. It identified high-risk individuals 2.5 years before CVD events. For the psychiatric service contacts in the top 5% of predicted risk, the positive predictive value was 5%, and the negative predictive value was 99%. The model issued at least one positive prediction for 39% of patients who developed CVD.Conclusions A machine learning model can accurately predict CVD risk among patients with mental illness using routinely collected electronic health record data. A decision support system building on this approach may aid primary CVD prevention in this high-risk population.
引用
收藏
页数:10
相关论文
共 35 条
[1]  
Bernstorff M., 2023, J OPEN SOURCE SOFTW, V8, P5197, DOI DOI 10.21105/JOSS.05197
[2]   Development and validation of a machine learning model for prediction of type 2 diabetes in patients with mental illness [J].
Bernstorff, Martin ;
Hansen, Lasse ;
Enevoldsen, Kenneth ;
Damgaard, Jakob ;
Haestrup, Frida ;
Perfalk, Erik ;
Danielsen, Andreas Aalkjaer ;
Ostergaard, Soren Dinesen .
ACTA PSYCHIATRICA SCANDINAVICA, 2025, 151 (03) :245-258
[3]   Stability of diagnostic coding of psychiatric outpatient visits across the transition from the second to the third version of the Danish National Patient Registry [J].
Bernstorff, Martin ;
Hansen, Lasse ;
Perfalk, Erik ;
Danielsen, Andreas Aalkjaer ;
Ostergaard, Soren Dinesen .
ACTA PSYCHIATRICA SCANDINAVICA, 2022, 146 (03) :272-283
[4]   Prediction of progression from pre-diabetes to diabetes: Development and validation of a machine learning model [J].
Cahn, Avivit ;
Shoshan, Avi ;
Sagiv, Tal ;
Yesharim, Rachel ;
Goshen, Ran ;
Shalev, Varda ;
Raz, Itamar .
DIABETES-METABOLISM RESEARCH AND REVIEWS, 2020, 36 (02)
[5]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[6]   Predicting mechanical restraint of psychiatric inpatients by applying machine learning on electronic health data [J].
Danielsen, A. A. ;
Fenger, M. H. J. ;
Ostergaard, S. D. ;
Nielbo, K. L. ;
Mors, O. .
ACTA PSYCHIATRICA SCANDINAVICA, 2019, 140 (02) :147-157
[7]   Cause-specific life-years lost in people with mental disorders: a nationwide, register-based cohort study [J].
Erlangsen, Annette ;
Andersen, Per Kragh ;
Toender, Anita ;
Laursen, Thomas Munk ;
Nordentoft, Merete ;
Canudas-Romo, Vladimir .
LANCET PSYCHIATRY, 2017, 4 (12) :937-945
[8]  
Grinsztajn Leo, 2022, arXiv
[9]   SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe [J].
Hageman, Steven ;
Pennells, Lisa ;
Ojeda, Francisco ;
Kaptoge, Stephen ;
Kuulasmaa, Kari ;
de Vries, Tamar ;
Xu, Zhe ;
Kee, Frank ;
Chung, Ryan ;
Wood, Angela ;
McEvoy, John William ;
Veronesi, Giovanni ;
Bolton, Thomas ;
Dendale, Paul ;
Ference, Brian A. ;
Halle, Martin ;
Timmis, Adam ;
Vardas, Panos ;
Danesh, John ;
Graham, Ian ;
Salomaa, Veikko ;
Visseren, Frank ;
De Bacquer, Dirk ;
Blankenberg, Stefan ;
Dorresteijn, Jannick ;
Di Angelantonio, Emanuele ;
Achenbach, Stephan ;
Aleksandrova, Krasimira ;
Amiano, Pilar ;
Amouyel, Philippe ;
Andersson, Jonas ;
Bakker, Stephan J. L. ;
Costa, Rui Bebiano Da Providencia ;
Beulens, Joline W. J. ;
Blaha, Michael ;
Bobak, Martin ;
Boer, Jolanda M. A. ;
Bonet, Catalina ;
Bonnet, Fabrice ;
Boutron-Ruault, Marie-Christine ;
Braaten, Tonje ;
Brenner, Hermann ;
Brunner, Fabian ;
Brunner, Eric J. ;
Brunstrom, Mattias ;
Buring, Julie ;
Butterworth, Adam S. ;
Capkova, Nadezda ;
Cesana, Giancarlo ;
Chrysohoou, Christina .
EUROPEAN HEART JOURNAL, 2021, 42 (25) :2439-2454
[10]  
Hansen L., 2023, Acta Neuropsychiatr, V1, P11