Adversarial Feature Equilibrium Network for Multimodal Change Detection in Heterogeneous Remote Sensing Images

被引:0
作者
Pu, Yan [1 ]
Gong, Maoguo [2 ,3 ]
Liu, Tongfei [4 ]
Zhang, Mingyang [1 ]
Gao, Tianqi [5 ]
Jiang, Fenlong [1 ]
Hu, Xiaobo [6 ]
机构
[1] Xidian Univ, Minist Educ, Key Lab Collaborat Intelligence Syst, Xian 710071, Peoples R China
[2] Xidian Univ, Minist Educ, Sch Elect Engn, Key Lab Collaborat Intelligence Syst, Xian 710071, Peoples R China
[3] Inner Mongolia Normal Univ, Acad Artificial Intelligence, Coll Math Sci, Hohhot 010028, Peoples R China
[4] Shaanxi Univ Sci & Technol, Sch Elect Informat & Artificial Intelligence, Shaanxi Joint Lab Artificial Intelligence, Xian 710021, Peoples R China
[5] China Acad Space Technol, Beijing Inst Control Engn, Beijing 100190, Peoples R China
[6] Shenzhen Leishen Intelligent Syst Co Ltd, Shenzhen 518100, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Land surface; Data mining; Accuracy; Deep learning; Standards; Sensitivity; Semantics; Optimization; Optical sensors; Change detection (CD); domain adaptation (DA); heterogeneous image; multimodal; remote sensing (RS); FUSION NETWORK; GRAPH;
D O I
10.1109/TGRS.2024.3480091
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Change detection (CD) methods have been crucial in exploring geo-environmental science. With the advancement of remote sensing (RS) technology, multimodal images acquired from different platforms and sensors are widely used for CD tasks. As an emerging task, multimodal CD (MCD) aims to achieve more comprehensive and precise detection of land cover changes through complementary information in multimodal images. However, there are significant differences between modalities, particularly in heterogeneous images. How to deal with modal differences while effectively integrating change information remains a challenge in MCD. In this article, we propose a novel adversarial feature equilibrium network (AFENet), which establishes an additional adversarial optimization to solve the equilibrium problem between modal differences and land cover changes. Our AFENet aligns the features and reduces the modal gap through a multiscale adversarial domain adaptation (MADA) approach. Meanwhile, a divergence-aware contrastive module (DCM) is designed as a regularization term for adversarial optimization. DCM affects the sensitivity of feature extractors by constraining the mutual information between changed and unchanged pixels. In this case, AFENet can maintain the consistency of feature representation while maximizing the discriminability of change targets. The features extracted from AFENet will then be integrated by our multistream feature fusion (MFF) module and utilized to generate change maps. The effectiveness of our approach is demonstrated on two scene-level multimodal RS datasets. Compared with existing methods, our AFENet achieves state-of-the-art (SOTA) performance on both datasets and outperforms the second-best F1 score by 4.64% and 1.1%, respectively.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] A novel feature descriptor for automatic change detection in remote sensing images
    Dalmiya, C. P.
    Santhi, N.
    Sathyabama, B.
    EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2019, 22 (02) : 183 - 192
  • [32] Multiview Hypergraph Fusion Network for Change Detection in High-Resolution Remote Sensing Images
    Zhao, Xue
    Zhang, Kai
    Zhang, Feng
    Sun, Jiande
    Wan, Wenbo
    Zhang, Huaxiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 4597 - 4610
  • [33] Dual-Dimension Feature Interaction for Semantic Change Detection in Remote Sensing Images
    Wang, Biao
    Jiang, Zhenghao
    Ma, Weichun
    Xu, Xiao
    Zhang, Peng
    Wu, Yanlan
    Yang, Hui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 9595 - 9605
  • [34] Lightweight and Efficient Multimodal Prompt Injection Network for Scene Parsing of Remote Sensing Scene Images
    Li, Yangzhen
    Zhou, Wujie
    Meng, Jiajun
    Yan, Weiqing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [35] Adaptive Feature Separation Network for Remote Sensing Object Detection
    Ma, Wenping
    Wu, Yiting
    Zhu, Hao
    Zhao, Wenhao
    Wu, Yue
    Hou, Biao
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [36] Multitask Siamese Network Guided by Enhanced Change Information for Semantic Change Detection in Bitemporal Remote Sensing Images
    Zuo, Xibing
    Jin, Fei
    Ding, Lei
    Wang, Shuxiang
    Lin, Yuzhun
    Liu, Bing
    Ding, Yao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 61 - 77
  • [37] Edge Detection Guide Network for Semantic Segmentation of Remote-Sensing Images
    Jin, Jianhui
    Zhou, Wujie
    Yang, Rongwang
    Ye, Lv
    Yu, Lu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [38] Change Detection in Remote-Sensing Images Using Pyramid Pooling Dynamic Sparse Attention Network With Difference Enhancement
    Li, Zhong
    Ouyang, Bin
    Qiu, Shaohua
    Xu, Xinghua
    Cui, Xiaopeng
    Hua, Xia
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 7052 - 7067
  • [39] Edge Detection Guide Network for Semantic Segmentation of Remote-Sensing Images
    Jin, Jianhui
    Zhou, Wujie
    Yang, Rongwang
    Ye, Lv
    Yu, Lu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [40] A Multi-Branch Feature Fusion Network for Building Detection in Remote Sensing Images
    Li, Chao
    Huang, Xinyu
    Tang, Jiechen
    Wang, Kai
    IEEE ACCESS, 2021, 9 (09): : 168511 - 168519