Adversarial Feature Equilibrium Network for Multimodal Change Detection in Heterogeneous Remote Sensing Images

被引:0
作者
Pu, Yan [1 ]
Gong, Maoguo [2 ,3 ]
Liu, Tongfei [4 ]
Zhang, Mingyang [1 ]
Gao, Tianqi [5 ]
Jiang, Fenlong [1 ]
Hu, Xiaobo [6 ]
机构
[1] Xidian Univ, Minist Educ, Key Lab Collaborat Intelligence Syst, Xian 710071, Peoples R China
[2] Xidian Univ, Minist Educ, Sch Elect Engn, Key Lab Collaborat Intelligence Syst, Xian 710071, Peoples R China
[3] Inner Mongolia Normal Univ, Acad Artificial Intelligence, Coll Math Sci, Hohhot 010028, Peoples R China
[4] Shaanxi Univ Sci & Technol, Sch Elect Informat & Artificial Intelligence, Shaanxi Joint Lab Artificial Intelligence, Xian 710021, Peoples R China
[5] China Acad Space Technol, Beijing Inst Control Engn, Beijing 100190, Peoples R China
[6] Shenzhen Leishen Intelligent Syst Co Ltd, Shenzhen 518100, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Land surface; Data mining; Accuracy; Deep learning; Standards; Sensitivity; Semantics; Optimization; Optical sensors; Change detection (CD); domain adaptation (DA); heterogeneous image; multimodal; remote sensing (RS); FUSION NETWORK; GRAPH;
D O I
10.1109/TGRS.2024.3480091
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Change detection (CD) methods have been crucial in exploring geo-environmental science. With the advancement of remote sensing (RS) technology, multimodal images acquired from different platforms and sensors are widely used for CD tasks. As an emerging task, multimodal CD (MCD) aims to achieve more comprehensive and precise detection of land cover changes through complementary information in multimodal images. However, there are significant differences between modalities, particularly in heterogeneous images. How to deal with modal differences while effectively integrating change information remains a challenge in MCD. In this article, we propose a novel adversarial feature equilibrium network (AFENet), which establishes an additional adversarial optimization to solve the equilibrium problem between modal differences and land cover changes. Our AFENet aligns the features and reduces the modal gap through a multiscale adversarial domain adaptation (MADA) approach. Meanwhile, a divergence-aware contrastive module (DCM) is designed as a regularization term for adversarial optimization. DCM affects the sensitivity of feature extractors by constraining the mutual information between changed and unchanged pixels. In this case, AFENet can maintain the consistency of feature representation while maximizing the discriminability of change targets. The features extracted from AFENet will then be integrated by our multistream feature fusion (MFF) module and utilized to generate change maps. The effectiveness of our approach is demonstrated on two scene-level multimodal RS datasets. Compared with existing methods, our AFENet achieves state-of-the-art (SOTA) performance on both datasets and outperforms the second-best F1 score by 4.64% and 1.1%, respectively.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] An Enhanced and Unsupervised Siamese Network With Superpixel-Guided Learning for Change Detection in Heterogeneous Remote Sensing Images
    Ji, Zhiyuan
    Wang, Xueqian
    Wang, Zhihao
    Li, Gang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 19451 - 19466
  • [2] MSFCN: A Multiscale Feature Correlation Network for Remote Sensing Image Scene Change Detection
    Xie, Feng
    Liao, Zhongping
    Tan, Jianbo
    Hao, Zhiguo
    Lv, Shining
    Lu, Zegang
    Zhang, Yunfei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 8275 - 8299
  • [3] Hierarchical Attention Feature Fusion-Based Network for Land Cover Change Detection With Homogeneous and Heterogeneous Remote Sensing Images
    Lv, ZhiYong
    Liu, Jie
    Sun, Weiwei
    Lei, Tao
    Benediktsson, Jon Atli
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] A Semisupervised Siamese Network for Efficient Change Detection in Heterogeneous Remote Sensing Images
    Jiang, Xiao
    Li, Gang
    Zhang, Xiao-Ping
    He, You
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] Heterogeneous Feature Collaboration Network for Salient Object Detection in Optical Remote Sensing Images
    Liu, Yutong
    Xu, Mingzhu
    Xiao, Tianxiang
    Tang, Haoyu
    Hu, Yupeng
    Nie, Liqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [6] Change Detection in Heterogeneous Optical and SAR Remote Sensing Images Via Deep Homogeneous Feature Fusion
    Jiang, Xiao
    Li, Gang
    Liu, Yu
    Zhang, Xiao-Ping
    He, You
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 1551 - 1566
  • [7] Simple Multiscale UNet for Change Detection With Heterogeneous Remote Sensing Images
    Lv, Zhiyong
    Huang, Haitao
    Gao, Lipeng
    Benediktsson, Jon Atli
    Zhao, Minghua
    Shi, Cheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [8] Feature Enhancement and Feedback Network for Change Detection in Remote Sensing Images
    Jiang, Zhenghao
    Wang, Biao
    Xu, Xiao
    Zhang, Yaobo
    Zhang, Peng
    Wu, Yanlan
    Yang, Hui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [9] Semantic Information Collaboration Network for Semantic Change Detection in Remote Sensing Images
    Ning, Xiaogang
    He, You
    Zhang, Hanchao
    Zhang, Ruiqian
    Chang, Dong
    Hao, Minghui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 12893 - 12909
  • [10] FRCD: Feature Refine Change Detection Network for Remote Sensing Images
    Wang, Zhewei
    Pan, Zongxu
    Hu, Yuxin
    Lei, Bin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20