Identification of Autism Spectrum Disorder (ASD) using Feature-based Machine Learning Classification Model

被引:0
|
作者
Praveen, Pappula [1 ]
Nagendra, Mothe [1 ]
Rahul, M. Ashwardh [1 ]
Sahithya [1 ]
Sai, Shiva [1 ]
Shoaib [1 ]
机构
[1] SR Univ, Sch Comp Sci & Artificial Intelligence, Warangal, Telangana, India
关键词
Autism Spectrum Disorder; F-Score; KNN; Machine Learning; Random forest; SVM;
D O I
10.1109/ICSCSS60660.2024.10625207
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An evolving brain ailment frequently referred to as Autism Spectrum Disorder (ASD) results in abnormalities in social, language, cognitive, and communication abilities. The two main classifications of interpersonal communication impairment and limited interest/repetitive habits are the focus of the updated ASD diagnostic criteria. Activities can be restricted for people with ASD because of their poor interactions with others and lack of communication. The complex neurodevelopmental disorder known as Autism Spectrum Disorder (ASD) presents enormous challenges in a number of areas, such as behavior, social communication, and sensory processing. ASD is still a complicated and diverse condition with wide-ranging effects on people, families, and society, even with improvements in diagnosis methods and treatment approaches. In addition to addressing important issues and enhancing outcomes for people with ASD, this paper offers a thorough review of current methods in ASD research and clinical practice. Innovative behavioral and pharmacological interventions targeting core symptoms and associated comorbidities, neuroimaging modalities such as diffusion tensor imaging and functional MRI for elucidating underlying neural mechanisms, and machine learning algorithms for early detection and diagnosis are just a few of the techniques that have recently advanced research on ASD. These methods present viable paths. But issues including missed or delayed diagnosis, restricted access to specialized care, social stigma, and inequalities in healthcare and education continue. The proposed goals encompass improving early screening and detection initiatives, endorsing inclusive and accessible therapies and support services, cultivating increased societal understanding and acceptance of ASD, and lobbying for legislation modifications to tackle systemic obstacles. We may work towards a more inclusive and supportive environment for people with ASD and their families by emphasizing these goals and utilizing current technological and scientific developments. This will ultimately improve the quality of life and societal engagement of these people.
引用
收藏
页码:1378 / 1384
页数:7
相关论文
共 50 条
  • [41] A Feature-Based Approach for Sentiment Quantification Using Machine Learning
    Ayyub, Kashif
    Iqbal, Saqib
    Nisar, Muhammad Wasif
    Munir, Ehsan Ullah
    Alarfaj, Fawaz Khaled
    Almusallam, Naif
    ELECTRONICS, 2022, 11 (06)
  • [42] Early Identification of Oil Palm Health based on UAV images using Feature-Based Machine Learning
    Lee, Chang Yi
    Tay, Lee Choo
    Tan, Weng Chun
    Lai, Weng Kin
    Lee, Sheng Siang
    2024 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING, SMARTCOMP 2024, 2024, : 302 - 307
  • [43] A MODEL OF CONTINUOUS INTERVENTION FOR CHILDREN WITH AUTISM SPECTRUM DISORDER (ASD)
    Kotsopoulos, S.
    CHILD AND ADOLESCENT MENTAL HEALTH, 2011, 16 : 3 - 3
  • [44] XYY Syndrome: A Possible Model for Autism Spectrum Disorder (ASD)
    Roeltgen, David P.
    Ross, Judith L.
    NEUROLOGY, 2010, 74 (09) : A243 - A244
  • [45] A Survey of Feature Selection for Vulnerability Prediction Using Feature-based Machine Learning
    Li, ZhanJun
    Shao, Yan
    ICMLC 2019: 2019 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2019, : 30 - 36
  • [46] An optimized Kernel Extreme Learning Machine for the classification of the autism spectrum disorder by using gaze tracking images
    Gaspar, Angel
    Oliva, Diego
    Hinojosa, Salvador
    Aranguren, Itzel
    Zaldivar, Daniel
    APPLIED SOFT COMPUTING, 2022, 120
  • [47] DETECTION OF AUTISM SPECTRUM DISORDER BY FEATURE EXTRACTION OF EEG SIGNALS AND MACHINE LEARNING CLASSIFIERS
    Din, Qaysar Mohi Ud
    Jayanthy, A. K.
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2023, 35 (01):
  • [48] Feature-based interaction: an identification and classification methodology
    Hounsell, MD
    Case, K
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 1999, 213 (04) : 369 - 380
  • [49] A Correlation-Based Feature Selection and Classification Approach for Autism Spectrum Disorder
    Verma, Manvi
    Kumar, Dinesh
    INTERNATIONAL JOURNAL OF INFORMATION SYSTEM MODELING AND DESIGN, 2021, 12 (02) : 51 - 66
  • [50] HEC-ASD: a hybrid ensemble-based classification model for predicting autism spectrum disorder disease genes
    Eman Ismail
    Walaa Gad
    Mohamed Hashem
    BMC Bioinformatics, 23