Identification of Autism Spectrum Disorder (ASD) using Feature-based Machine Learning Classification Model

被引:0
|
作者
Praveen, Pappula [1 ]
Nagendra, Mothe [1 ]
Rahul, M. Ashwardh [1 ]
Sahithya [1 ]
Sai, Shiva [1 ]
Shoaib [1 ]
机构
[1] SR Univ, Sch Comp Sci & Artificial Intelligence, Warangal, Telangana, India
来源
2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024 | 2024年
关键词
Autism Spectrum Disorder; F-Score; KNN; Machine Learning; Random forest; SVM;
D O I
10.1109/ICSCSS60660.2024.10625207
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An evolving brain ailment frequently referred to as Autism Spectrum Disorder (ASD) results in abnormalities in social, language, cognitive, and communication abilities. The two main classifications of interpersonal communication impairment and limited interest/repetitive habits are the focus of the updated ASD diagnostic criteria. Activities can be restricted for people with ASD because of their poor interactions with others and lack of communication. The complex neurodevelopmental disorder known as Autism Spectrum Disorder (ASD) presents enormous challenges in a number of areas, such as behavior, social communication, and sensory processing. ASD is still a complicated and diverse condition with wide-ranging effects on people, families, and society, even with improvements in diagnosis methods and treatment approaches. In addition to addressing important issues and enhancing outcomes for people with ASD, this paper offers a thorough review of current methods in ASD research and clinical practice. Innovative behavioral and pharmacological interventions targeting core symptoms and associated comorbidities, neuroimaging modalities such as diffusion tensor imaging and functional MRI for elucidating underlying neural mechanisms, and machine learning algorithms for early detection and diagnosis are just a few of the techniques that have recently advanced research on ASD. These methods present viable paths. But issues including missed or delayed diagnosis, restricted access to specialized care, social stigma, and inequalities in healthcare and education continue. The proposed goals encompass improving early screening and detection initiatives, endorsing inclusive and accessible therapies and support services, cultivating increased societal understanding and acceptance of ASD, and lobbying for legislation modifications to tackle systemic obstacles. We may work towards a more inclusive and supportive environment for people with ASD and their families by emphasizing these goals and utilizing current technological and scientific developments. This will ultimately improve the quality of life and societal engagement of these people.
引用
收藏
页码:1378 / 1384
页数:7
相关论文
共 50 条
  • [41] A Review of Machine Learning Models for Predicting Autism Spectrum Disorder
    Kanchanamala, P.
    Sagar, G. Leela
    HELIX, 2019, 9 (01): : 4797 - 4801
  • [42] A Correlation-Based Feature Selection and Classification Approach for Autism Spectrum Disorder
    Verma, Manvi
    Kumar, Dinesh
    INTERNATIONAL JOURNAL OF INFORMATION SYSTEM MODELING AND DESIGN, 2021, 12 (02) : 51 - 66
  • [43] Has machine learning enhanced the diagnosis of autism spectrum disorder?
    Shirwaikar R.D.
    Sarwari I.
    Najam M.
    Shama H.M.
    Critical Reviews in Biomedical Engineering, 2023, 51 (01) : 1 - 14
  • [44] An optimized Kernel Extreme Learning Machine for the classification of the autism spectrum disorder by using gaze tracking images
    Gaspar, Angel
    Oliva, Diego
    Hinojosa, Salvador
    Aranguren, Itzel
    Zaldivar, Daniel
    APPLIED SOFT COMPUTING, 2022, 120
  • [45] Reliable Autism Spectrum Disorder Diagnosis for Pediatrics Using Machine Learning and Explainable AI
    Jeon, Insu
    Kim, Minjoong
    So, Dayeong
    Kim, Eun Young
    Nam, Yunyoung
    Kim, Seungsoo
    Shim, Sehoon
    Kim, Joungmin
    Moon, Jihoon
    DIAGNOSTICS, 2024, 14 (22)
  • [46] Using #ActuallyAutistic on Twitter for Precision Diagnosis of Autism Spectrum Disorder: Machine Learning Study
    Jaiswal, Aditi
    Washington, Peter
    JMIR FORMATIVE RESEARCH, 2024, 8
  • [47] Mental health status monitoring for people with autism spectrum disorder using machine learning
    Jayanthi S.
    Priyadharshini V.
    Kirithiga V.
    Premalatha S.
    International Journal of Information Technology, 2024, 16 (1) : 43 - 51
  • [48] A review on diagnostic autism spectrum disorder approaches based on the Internet of Things and Machine Learning
    Mehdi Hosseinzadeh
    Jalil Koohpayehzadeh
    Ahmed Omar Bali
    Farnoosh Afshin Rad
    Alireza Souri
    Ali Mazaherinezhad
    Aziz Rezapour
    Mahdi Bohlouli
    The Journal of Supercomputing, 2021, 77 : 2590 - 2608
  • [49] Identifying autism spectrum disorder based on machine learning for multi-site fMRI
    Kang, Li
    Chen, Mubin
    Huang, Jianjun
    Xu, Jinyang
    JOURNAL OF NEUROSCIENCE METHODS, 2025, 416
  • [50] A review on diagnostic autism spectrum disorder approaches based on the Internet of Things and Machine Learning
    Hosseinzadeh, Mehdi
    Koohpayehzadeh, Jalil
    Bali, Ahmed Omar
    Rad, Farnoosh Afshin
    Souri, Alireza
    Mazaherinezhad, Ali
    Rezapour, Aziz
    Bohlouli, Mahdi
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (03) : 2590 - 2608