LcMYB5, an R2R3-MYB family gene from Lonicera caerulea L., enhances drought and salt tolerance in transgenic tobacco and blue honeysuckle

被引:0
作者
Fu, Chunlin [1 ,2 ]
Bian, Chunyang [1 ,2 ]
Chen, Jing [1 ,2 ]
Zhang, Qian [1 ,2 ]
Qin, Dong [1 ,2 ]
Li, Jiangkuo [3 ,4 ]
Zhang, Peng [3 ,4 ]
Huo, Junwei [1 ,2 ]
Gang, Huixin [1 ,2 ]
机构
[1] Northeast Agr Univ, Coll Hort & Landscape Architecture, Key Lab Biol & Genet Improvement Hort Crops Northe, Minist Agr & Rural Affairs, Harbin 150030, Peoples R China
[2] Northeast Agr Univ, Natl Local Joint Engn Res Ctr Dev & Utilizat Small, Harbin 150030, Peoples R China
[3] Tianjin Acad Agr Sci, Inst Agr Prod Preservat & Proc Technol, Tianjin 300384, Peoples R China
[4] Natl Engn & Technol Res Ctr Preservat Agr Prod, Tianjin Key Lab Postharvest Physiol & Storage Agr, Tianjin 300384, Peoples R China
基金
中国博士后科学基金;
关键词
Drought stress; LcMYB5; Lonicera caerulea L; Salt stress; Tobacco; MYB TRANSCRIPTION FACTOR; STRESS TOLERANCE; SIGNAL-TRANSDUCTION; CONFERS TOLERANCE; OVER-EXPRESSION; CHLOROPHYLL-A; COLD; ANTHOCYANIN; RESPONSES; ENCODES;
D O I
10.1016/j.jplph.2024.154409
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
MYB transcription factors exert crucial functions in enhancing plant stress tolerance, which is impacted by soil drought and salinity. In our study, the R2R3-type MYB transcription factor gene LcMYB5 from blue honeysuckle ( Lonicera caerulea L.) was successfully cloned and identified, and confirmed its nuclear localization. LcMYB5 overexpression was vastly enhanced drought and salt tolerance in both blue honeysuckle and tobacco seedlings. After drought stress, transgenic tobacco exhibited an average survival rate of 70.30%, while most wild-type (WT) plants perished, resulting in a survival rate of only 15.33%. Following salt stress, the average survival rate for transgenic tobacco reached 77.24%, compared to just 22.47% for WT plants. Measurements indicated, that transgenic tobacco had higher proline content than WT, as well as higher superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity. Transgenic tobacco decreased chlorophyll content less dramatically than WT tobacco, despite both tobaccos having decreased chlorophyll content. Furthermore, the level of malondialdehyde (MDA) and relative conductivity were lower in transgenic tobacco compared to WT. Furthermore, LcMYB5 overexpression significantly increased the expression levels of key genes related to drought stress ( NCED1 , NCED2, PYL4, PYL8, and CBL1) and salt stress ( NHX1 , SOD, CAT1, SOS1, and HSP17.8), thus improving transgenic tobacco's stress tolerance. Compared to WT blue honeysuckle, transiently transformed LcMYB5-expressing blue honeysuckle exhibited milder damage under stress conditions, a significant increase in chlorophyll and proline content was observed, the activities of SOD, POD and CAT were also significantly increased, the increase in MDA content and relative conductivity is relatively small. Additionally, In addition, transient expression of LcMYB5 can also positively regulate the expression of these five key genes of drought stress and five key genes of salt stress, so as to improve the resistance of transgenic blue honeysuckle to drought and salt stress. In summary, our study reveals the important regulatory role of LcMYB5 in plant resistance to drought and salt stress, providing theoretical support and potential application value for further improving crop stress resistance.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A R2R3-MYB Transcription Factor Gene, BpMYB123, Regulates BpLEA14 to Improve Drought Tolerance in Betula platyphylla
    Lv, Kaiwen
    Wei, Hairong
    Liu, Guifeng
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [22] Overexpression of the Wild Soybean R2R3-MYB Transcription Factor GsMYB15 Enhances Resistance to Salt Stress and Helicoverpa Armigera in Transgenic Arabidopsis
    Shen, Xin-Jie
    Wang, Yan-Yan
    Zhang, Yong-Xing
    Guo, Wei
    Jiao, Yong-Qing
    Zhou, Xin-An
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (12)
  • [23] Ectopic expression of the R2R3-MYB gene from Tricyrtis sp results in leaf color alteration in transgenic Pelargonium crispum
    Kanemaki, Atsushi
    Otani, Masahiro
    Takano, Miho
    Fujimoto, Takuo
    Okuhara, Hiroaki
    Nomizu, Toshikazu
    Kondo, Masayoshi
    Kobayashi, Hitoshi
    Tatsuzawa, Fumi
    Nakano, Masaru
    SCIENTIA HORTICULTURAE, 2018, 240 : 411 - 416
  • [24] SIMYB102, an R2R3-type MYB gene, confers salt tolerance in transgenic tomato
    Zhang, Xu
    Chen, Lichen
    Shi, Qinghua
    Ren, Zhonghai
    PLANT SCIENCE, 2020, 291
  • [25] A R2R3-MYB transcription factor gene in common wheat (namely TaMYBsm1) involved in enhancement of drought tolerance in transgenic Arabidopsis
    Li, Meng-jun
    Qiao, Yu
    Li, Ya-qing
    Shi, Zhan-liang
    Zhang, Nan
    Bi, Cai-li
    Guo, Jin-kao
    JOURNAL OF PLANT RESEARCH, 2016, 129 (06) : 1097 - 1107
  • [26] A R2R3-MYB transcription factor gene in common wheat (namely TaMYBsm1) involved in enhancement of drought tolerance in transgenic Arabidopsis
    Meng-jun Li
    Yu Qiao
    Ya-qing Li
    Zhan-liang Shi
    Nan Zhang
    Cai-li Bi
    Jin-kao Guo
    Journal of Plant Research, 2016, 129 : 1097 - 1107
  • [27] The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis
    Schwinn, Kathy E.
    Hanh Ngo
    Kenel, Fernand
    Brummell, David A.
    Albert, Nick W.
    McCallum, John A.
    Pither-Joyce, Meeghan
    Crowhurst, Ross N.
    Eady, Colin
    Davies, Kevin M.
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [28] Functional activation of a novel R2R3-MYB protein gene, GmMYB68, confers salt-alkali resistance in soybean (Glycine max L.)
    He, Yuxuan
    Dong, Yingshan
    Yang, Xiangdong
    Guo, Dongquan
    Qian, Xueyan
    Yan, Fan
    Wang, Ying
    Li, Jingwen
    Wang, Qingyu
    GENOME, 2020, 63 (01) : 13 - 26
  • [29] New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco
    Ricardo Perez-Diaz, J.
    Perez-Diaz, Jorge
    Madrid-Espinoza, Jose
    Gonzalez-Villanueva, Enrique
    Moreno, Yerko
    Ruiz-Lara, Simon
    PLANT MOLECULAR BIOLOGY, 2016, 90 (1-2) : 63 - 76
  • [30] New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco
    J. Ricardo Pérez-Díaz
    Jorge Pérez-Díaz
    José Madrid-Espinoza
    Enrique González-Villanueva
    Yerko Moreno
    Simón Ruiz-Lara
    Plant Molecular Biology, 2016, 90 : 63 - 76