共 49 条
- [41] Shokri R., Shmatikov V., Privacy-preserving deep learning, Proc. ACM SIGSAC Conf. Comput. Commun. Security, pp. 1310-1321, (2015)
- [42] Geyer R.C., Klein T., Nabi M., Differentially private federated learning: A client level perspective, (2017)
- [43] Hayes J., Mahloujifar S., Balle B., Bounding training data reconstruction in DP-SGD, Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 36, pp. 1-17, (2023)
- [44] Szekely G.J., Rizzo M.L., Bakirov N.K., Measuring and testing dependence by correlation of distances, Ann. Statist., 35, 6, pp. 2769-2794, (2007)
- [45] Vepakomma P., Swedish T., Raskar R., Gupta O., Dubey A., No peek: A survey of private distributed deep learning, (2018)
- [46] Noorbakhsh S.L., Zhang B., Hong Y., Wang B., Inf<sup>2</sup>Guard: An information-theoretic framework for learning privacy-preserving representations against inference attacks, Proc. USENIX Secur. Symp. (USENIX Security), pp. 2405-2422, (2024)
- [47] Gascon A., Et al., Privacy-preserving distributed linear regression on high-dimensional data, Proc. Privacy Enhancing Technol., 2017, 4, pp. 345-364, (2017)
- [48] Sharma S., Xing C., Liu Y., Kang Y., Secure and efficient federated transfer learning, Proc. IEEE Int. Conf. Big Data, pp. 2569-2576, (2019)
- [49] Gentry C., Fully homomorphic encryption using ideal lattices, Proc. 41st Annu. ACM Symp. Theory Comput. (STOC), pp. 169-178, (2009)