共 49 条
- [1] McMahan B., Moore E., Ramage D., Hampson S., Arcas B.A.Y., Communication-efficient learning of deep networks from decentralized data, Proc. 20th Int. Conf. Artif. Intell. Statist., 54, pp. 1273-1282, (2017)
- [2] Brisimi T.S., Chen R., Mela T., Olshevskya A., Paschalidisa I.C., Shi W., Federated learning of predictive models from federated electronic health records, Int. J. Med. Inform., 112, pp. 59-67, (2018)
- [3] Yang Q., Liu Y., Chen T., Tong Y., Federated machine learning: Concept and applications, ACM Trans. Intell. Syst. Technol., 10, 2, pp. 1-19, (2019)
- [4] Cheng Y., Liu Y., Chen T., Yang Q., Federated learning for privacy-preserving AI, Commun. ACM, 63, 12, pp. 33-36, (2020)
- [5] Mu Y., Deep leakage from gradients, Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 32, pp. 1-12, (2023)
- [6] Geiping J., Bauermeister H., Droge H., Moeller M., Inverting gradients—How easy is it to break privacy in federated learning?, Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 33, pp. 16937-16947, (2020)
- [7] Yin H., Mallya A., Vahdat A., Alvarez J.M., Kautz J., Molchanov P., See through gradients: Image batch recovery via gradinversion, Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 16337-16346, (2021)
- [8] Wu R., Chen X., Guo C., Weinberger K.Q., Learning to invert: Simple adaptive attacks for gradient inversion in federated learning, Proc. 39th Conf. Uncertainty Artif. Intell. (UAI), 216, pp. 2293-2303, (2022)
- [9] Fowl L., Geiping J., Czaja W., Goldblum M., Goldstein T., Robbing the fed: Directly obtaining private data in federated learning with modified models, Proc. Int. Conf. Learn. Represent. (ICLR), pp. 1-16, (2021)
- [10] Nasr M., Shokri R., Houmansadr A., Comprehensive privacy analysis of deep learning, Proc. 40th IEEE Symp. Secur. Privacy, 1, pp. 739-753, (2019)