Kinetic and Performance Assessment of Hydrate-Based Precombustion CO2 Capture Using Dry Water

被引:0
|
作者
Dadhich, Raghav [1 ]
Babu, Ponnivalavan [1 ]
Daraboina, Nagu [1 ]
机构
[1] Univ Tulsa, Russell Sch Chem Engn, Tulsa, OK 74104 USA
关键词
PRE-COMBUSTION CAPTURE; INTEGRATED COLLABORATIVE TECHNOLOGY; CARBON-DIOXIDE; FLUE-GAS; DEVELOPMENT PROGRAM; CLATHRATE PROCESS; SEPARATION; SILICA; TETRAHYDROFURAN; SEQUESTRATION;
D O I
10.1021/acs.energyfuels.4c04807
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The performance of dry water as a porous medium in a fixed bed reactor for hydrate-based precombustion carbon capture was assessed. Experiments conducted at 9.0 MPa and 273.9 K in both stirred tank and fixed bed reactors proved that dry water performs more effectively in the fixed bed reactor compared with the stirred tank reactor. To further assess the performance of dry water, kinetic experiments were performed across three different pressures at 273.9 K as well as at 275.1 K for two pressures (9 and 8.5 MPa). From the results, it is evident that both the experimental pressure and temperature significantly influenced the kinetics. A comparison with available literature data revealed that dry water outperformed the stirred tank reactor and fixed bed reactor with both silica sand and silica gel under similar experimental conditions. Dry water has the potential to be an excellent medium in a fixed bed reactor for CO2 capture.
引用
收藏
页码:23625 / 23632
页数:8
相关论文
共 50 条
  • [1] Effect of nanoparticles as a substitute for kinetic additives on the hydrate-based CO2 capture
    Cheng, Zucheng
    Xu, Huazheng
    Wang, Sijia
    Liu, Weiguo
    Li, Yanghui
    Jiang, Lanlan
    Chen, Cong
    Song, Yongchen
    CHEMICAL ENGINEERING JOURNAL, 2021, 424 (424)
  • [2] Hydrate-Based CO2 Capture through Nano Dry Gels plus Tetrahydrofuran - A Kinetic and Thermodynamic Study
    Golkhou, Fatemeh
    Haghtalab, Ali
    CHEMICAL ENGINEERING & TECHNOLOGY, 2021, 44 (12) : 2290 - 2299
  • [3] Quest for optimal nanoconfinement for hydrate-based CO2 capture
    Wang, Pengfei
    Kang, Hongwei
    Teng, Ying
    Li, Yun
    Wang, Xiaomeng
    Su, Qinqin
    Zhu, Jianbo
    Han, Songbai
    Zhao, Yusheng
    Zhu, Jinlong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (06):
  • [4] Recent advances in gas hydrate-based CO2 capture
    Dashti, Hossein
    Yew, Leonel Zhehao
    Lou, Xia
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2015, 23 : 195 - 207
  • [5] A literature research on the performance evaluation of hydrate-based CO2 capture and separation process
    He, Junnan
    Liu, Yinan
    Ma, Zhiwei
    Deng, Shuai
    Zhao, Ruikai
    Zhao, Li
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105
  • [6] CO2 capture by adsorption and hydrate-based separation: A technological review
    Thilagan J.
    Gayathri B.
    Sugumar M.
    International Journal of Environment and Waste Management, 2018, 22 (1-4): : 147 - 181
  • [7] Precombustion CO2 capture using a hybrid process of adsorption and gas hydrate formation
    Zhong, Dong-Liang
    Wang, Jia-Le
    Lu, Yi-Yu
    Li, Zheng
    Yan, Jin
    ENERGY, 2016, 102 : 621 - 629
  • [8] CO2 nanobubbles as a novel kinetic promoter in hydrate-based desalination
    Montazeri, Seyed Mohammad
    Kalogerakis, Nicolas
    Kolliopoulos, Georgios
    DESALINATION, 2024, 574
  • [9] Experimental and process simulation of hydrate-based CO2 capture from biogas
    Li, Qi
    Fan, Shuanshi
    Chen, Qiuxiong
    Yang, Guang
    Chen, Yunwen
    Li, Luling
    Li, Gang
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2019, 72
  • [10] Gas Hydrate-Based CO2 Capture: A Journey from Batch to Continuous
    Rehman, Adeel Ur
    Lal, Bhajan
    ENERGIES, 2022, 15 (21)