Solid-State Precipitation of Silver Nanoparticles Nucleated during Al Anodizing: Mechanism and Antibacterial Properties

被引:1
作者
Atz-Dick, Teo [1 ,2 ]
Valente, Renato de Castro [1 ]
Machado, Thiago Vignoli [1 ]
Horn, Fabiana [3 ]
Dick, Luis F. P. [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Dept Met, Lab Proc Eletroquim & Corrosao ELETROCORR, BR-91501970 PORTO ALEGRE, Brazil
[2] Hosp Clin Porto Alegre HCPA, Ctr Terapia Genica, Av Ramiro Barcelos 2350, BR-90035903 PORTO ALEGRE, Brazil
[3] Univ Fed Rio Grande do Sul, Dept Biofi?s, BR-91501970 Porto Alegre, Brazil
关键词
antibacterial surface; Ag-Al; anodizing; Ag nanoparticles; Escherichia coli; OXIDE-FILMS; SURFACES; OXYGEN;
D O I
10.1021/acsabm.4c01694
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study presents an innovative approach to creating antibacterial aluminum surfaces by combining the antibacterial properties of silver nanoparticles (Ag NPs) with the nanoarchitecture of anodized aluminum oxide in one step. An Al-Ag alloy containing 10 wt % Ag was synthesized and anodized in 0.3 M oxalic acid. Ag NPs precipitated in the solid state during anodization, resulting in a porous nanocomposite structure. Comprehensive characterization using SEM, TEM, and EDS revealed a 43 mu m thick oxide layer with uniformly distributed nanopores of approximately 100 nm in diameter. Ag NPs with diameters ranging from 2 to 14 nm precipitated dispersed on the surface, inside pores, and within the Al2O3 matrix. Antibacterial properties were evaluated against Escherichia coli. The anodized Al-Ag surface demonstrated robust antibacterial activity after short incubation times (up to 1 x 108 CFU/ml after 3 h). The enhanced antibacterial properties are attributed to the optimal size and distribution of Ag NPs and the potential physical bactericidal effect of the nanoporous structure. This strategy for the precipitation of Ag NPs in the solid state could be used to fabricate high-touch surfaces in hospitals.
引用
收藏
页码:1466 / 1474
页数:9
相关论文
共 40 条
[1]   Anodized Aluminum Surface with Topography-Mediated Antibacterial Properties [J].
Agbe, Henry ;
Sarkar, Dilip Kumar ;
Chen, X-Grant .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2022, 8 (03) :1087-1095
[2]  
Batchelor-McAuley C, 2014, INT J ELECTROCHEM SC, V9, P1132
[3]   Phase and properties prediction of Al-Ag binary system using thermo-calc [J].
Ben, Festus ;
Olubambi, P. A. .
MRS ADVANCES, 2023, 8 (10) :577-582
[4]   Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria [J].
Berne, Cecile ;
Ducret, Adrien ;
Hardy, Gail G. ;
Brun, Yves V. .
MICROBIOLOGY SPECTRUM, 2015, 3 (04)
[5]   Silver Nanoparticles and Their Antibacterial Applications [J].
Bruna, Tamara ;
Maldonado-Bravo, Francisca ;
Jara, Paul ;
Caro, Nelson .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (13)
[6]  
Castaing R., 1960, Adv. Electron. Electron Phys, P317, DOI DOI 10.1016/S0065-2539(08)60212-7
[7]   High-touch surfaces: microbial neighbours at hand [J].
Cobrado, L. ;
Silva-Dias, A. ;
Azevedo, M. M. ;
Rodrigues, A. G. .
EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2017, 36 (11) :2053-2062
[8]   A critical review on the variations in anodization parameters toward microstructural formation of TiO2 nanotubes [J].
David, T. Manovah ;
Dev, Priya Ranjan ;
Wilson, P. ;
Sagayaraj, P. ;
Mathews, Tom .
ELECTROCHEMICAL SCIENCE ADVANCES, 2022, 2 (04)
[9]   Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens [J].
Dong, Yaohua ;
Zhu, Hongling ;
Shen, Yuanyuan ;
Zhang, Wenting ;
Zhang, Li .
PLOS ONE, 2019, 14 (09)
[10]   Nano-structured antimicrobial surfaces: From nature to synthetic analogues [J].
Elbourne, Aaron ;
Crawford, Russell J. ;
Ivanova, Elena P. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 508 :603-616