Compressive SAR Imaging Based on Modified Low-Rank and Sparse Decomposition

被引:0
|
作者
Byeon, Jeong-Il [1 ]
Lee, Wookyung [1 ]
Choi, Jihoon [1 ]
机构
[1] Korea Aerosp Univ, Sch Elect & Informat Engn, Goyang Si 10540, Gyeonggi Do, South Korea
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Radar polarimetry; Imaging; Receivers; Radar imaging; Image reconstruction; Synthetic aperture radar; Azimuth; Thresholding (Imaging); Transforms; Sparse matrices; compressive sensing; low-rank and sparse decomposition; dual-tree complex wavelet transform; BISTATIC SAR; SIGNAL RECOVERY; ALGORITHM; RECONSTRUCTION; REPRESENTATION;
D O I
10.1109/ACCESS.2024.3524084
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a novel imaging method for synthetic aperture radar (SAR) systems with compressive sensing (CS) by modifying the existing low-rank and sparse decomposition (LRSD) scheme. The proposed CS-based modified LRSD (CS-MLRSD) method uses 2D random sampling for SAR raw data compression and then employs the dual-tree complex wavelet transform (DCWT) instead of singular value decomposition to more accurately reconstruct directional information in the low-rank background image. For the CS-MLRSD scheme, an iterative thresholding algorithm is derived to separately reconstruct the low-rank and sparse components. A bivariate shrinkage function is employed to threshold the wavelet coefficients for sparse representation of the low-rank part, while soft thresholding is used to sparsely represent the dominant objects in the image space. The proposed CS-MLRSD scheme is applicable to arbitrary SAR geometries in which the SAR imaging and inverse SAR imaging functions are defined. Numerical simulations using SAR modeling data validate the convergence of the proposed method and compare its computational complexity with baseline CS-SAR imaging schemes. Moreover, using both SAR modeling data and real SAR measurement data, the proposed scheme demonstrates significant improvements in reconstructed image quality compared to existing CS-SAR techniques.
引用
收藏
页码:1663 / 1679
页数:17
相关论文
共 50 条
  • [21] Video SAR Imaging Based on Low-Rank Tensor Recovery
    Pu, Wei
    Wang, Xiaodong
    Wu, Junjie
    Huang, Yulin
    Yang, Jianyu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (01) : 188 - 202
  • [22] MOVING TARGET DETECTION BASED ON AN ADAPTIVE LOW-RANK SPARSE DECOMPOSITION
    Chong, Jiang
    COMPUTING AND INFORMATICS, 2020, 39 (05) : 1061 - 1081
  • [23] LOW-RANK AND SPARSE MATRIX DECOMPOSITION-BASED PAN SHARPENING
    Rong, Kaixuan
    Wang, Shuang
    Zhang, Xiaohua
    Hou, Biao
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 2276 - 2279
  • [24] Missing Low-Rank and Sparse Decomposition Based on Smoothed Nuclear Norm
    Azghani, Masoumeh
    Esmaeili, Ashkan
    Behdin, Kayhan
    Marvasti, Farokh
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (06) : 1550 - 1558
  • [25] Moving target detection based on an adaptive low-rank sparse decomposition
    Chong J.
    Computing and Informatics, 2021, 39 (05) : 1061 - 1081
  • [26] Image Tag Completion Based on Low-Rank Sparse Decomposition and Optimization
    Meng L.
    Zhang S.
    Hu L.
    Zhang J.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2020, 32 (01): : 36 - 44
  • [27] A Blind Spectrum Sensing Based on Low-Rank and Sparse Matrix Decomposition
    Junsheng Mu
    Xiaojun Jing
    Hai Huang
    Ning Gao
    中国通信, 2018, 15 (08) : 118 - 125
  • [28] Convolutional Sparse and Low-Rank Coding-Based Image Decomposition
    Zhang, He
    Patel, Vishal M.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (05) : 2121 - 2133
  • [29] A Blind Spectrum Sensing Based on Low-Rank and Sparse Matrix Decomposition
    Mu, Junsheng
    Jing, Xiaojun
    Huang, Hai
    Gao, Ning
    CHINA COMMUNICATIONS, 2018, 15 (08) : 118 - 125
  • [30] CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition
    Gou, Shuiping
    Wang, Yueyue
    Wang, Zhilong
    Peng, Yong
    Zhang, Xiaopeng
    Jiao, Licheng
    Wu, Jianshe
    PLOS ONE, 2013, 8 (09):