Machine learning-based risk prediction of mild cognitive impairment in patients with chronic heart failure: A model development and validation study

被引:0
作者
Yang, Jin [1 ,2 ]
Xie, Yan [1 ]
Wang, Tianyi [1 ]
Pu, You [3 ]
Ye, Ting [1 ]
Huang, Yunman [1 ]
Song, Baomei [4 ]
Cheng, Fengqin [5 ]
Yang, Zheng [1 ]
Zhang, Xianqin [1 ]
机构
[1] Chengdu Med Coll, Chengdu, Peoples R China
[2] Sichuan Mianyang 404 Hosp, Dept Cardiol, Mianyang, Peoples R China
[3] Sichuan Mianyang 404 Hosp, Dept Oncol, Mianyang, Peoples R China
[4] Gen Hosp Western Theater Command, Dept Cardiol, Chengdu, Peoples R China
[5] Sichuan Mianyang 404 Hosp, Nursing Dept, 56 Yuejin Rd, Mianyang 621000, Sichuan, Peoples R China
关键词
MCI; Cognitive impairment; Chronic heart failure; Predictive model; Machine learning; ASSOCIATION; AMERICA; SOCIETY;
D O I
10.1016/j.gerinurse.2025.01.022
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Accurate identification of individuals at high risk for mild cognitive impairment (MCI) among chronic heart failure (CHF) patients is crucial for reducing rehospitalization and mortality rates. This study aimed to develop and validate a machine learning model to predict MCI risk in CHF patients. 602 CHF patients were included in this cross-sectional analysis. We constructed four machine learning models and assessed the models using the area under the receiver operating characteristic curve (AUC), calibration curve, and clinical decision curve. Results showed that scores of psychological and social adaptation management, age, free triiodothyronine, Self-rating Depression Scale scores, hemoglobin, sleep duration per night and gender were the best predictors and these factors were used to construct dynamic nomograms. Among all models, eXtreme Gradient Boosting (XGBoost) with an AUC of 0.940 performed the best in predicting the risk of MCI in CHF patients. Dynamic nomogram helps clinicians perform early screening in large populations. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:145 / 156
页数:12
相关论文
共 73 条
  • [11] Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1002/bjs.9736, 10.1136/bmj.g7594, 10.7326/M14-0697, 10.1038/bjc.2014.639, 10.1016/j.jclinepi.2014.11.010, 10.1186/s12916-014-0241-z, 10.7326/M14-0698, 10.1016/j.eururo.2014.11.025]
  • [12] Effect of Permanent Atrial Fibrillation on Cognitive Function in Patients With Chronic Heart Failure
    Coma, Maria
    Jesus Gonzalez-Moneo, Maria
    Enjuanes, Cristina
    Poveda Velazquez, Paula
    Bas Espargaro, Deva
    Andres Perez, Bernardo
    Tajes, Marta
    Garcia-Elias, Anna
    Farre, Nuria
    Sanchez-Benavides, Gonzalo
    Marti-Almor, Julio
    Comin-Colet, Josep
    Benito, Begona
    [J]. AMERICAN JOURNAL OF CARDIOLOGY, 2016, 117 (02) : 233 - 239
  • [13] How prevalent is overfitting of regression models? A survey of recent articles in three psychology journals
    Dalicandro, Lauren
    Harder, Jane A.
    Mazmanian, Dwight
    Weaver, Bruce
    [J]. QUANTITATIVE METHODS FOR PSYCHOLOGY, 2021, 17 (01): : 1 - 6
  • [14] Machine Learning in Medicine Will This Time Be Different?
    Deo, Rahul C.
    [J]. CIRCULATION, 2020, 142 (16) : 1521 - 1523
  • [15] MINI-MENTAL STATE - PRACTICAL METHOD FOR GRADING COGNITIVE STATE OF PATIENTS FOR CLINICIAN
    FOLSTEIN, MF
    FOLSTEIN, SE
    MCHUGH, PR
    [J]. JOURNAL OF PSYCHIATRIC RESEARCH, 1975, 12 (03) : 189 - 198
  • [16] Temporal changes in total and hippocampal brain volume and cognitive function in patients with chronic heart failure-the COGNITION.MATTERS-HF cohort study
    Frey, Anna
    Homola, Gyorgy A.
    Henneges, Carsten
    Muhlbauer, Larissa
    Sell, Roxane
    Kraft, Peter
    Franke, Maximilian
    Morbach, Caroline
    Vogt, Marius
    Mullges, Wolfgang
    Ertl, Georg
    Solymosi, Laszlo
    Pirpamer, Lukas
    Schmidt, Reinhold
    Pham, Mirko
    Stork, Stefan
    Stoll, Guido
    [J]. EUROPEAN HEART JOURNAL, 2021, 42 (16) : 1569 - 1578
  • [17] Cognitive Impairment in Heart Failure: A Heart Failure Society of America Scientific Statement
    Goyal, Parag
    Didomenico, Robert J.
    Pressler, Susan J.
    Ibeh, Chinwe
    White-Williams, Connie
    Allen, Larry A.
    Gorodeski, Eiran Z.
    [J]. JOURNAL OF CARDIAC FAILURE, 2024, 30 (03) : 488 - 504
  • [18] Long-Term Cognitive Decline After Newly Diagnosed Heart Failure Longitudinal Analysis in the CHS (Cardiovascular Health Study)
    Hammond, Christa A.
    Blades, Natalie J.
    Chaudhry, Sarwat, I
    Dodson, John A.
    Longstreth, W. T., Jr.
    Heckbert, Susan R.
    Psaty, Bruce M.
    Arnold, Alice M.
    Dublin, Sascha
    Sitlani, Colleen M.
    Gardin, Julius M.
    Thielke, Stephen M.
    Nanna, Michael G.
    Gottesman, Rebecca F.
    Newman, Anne B.
    Thacker, Evan L.
    [J]. CIRCULATION-HEART FAILURE, 2018, 11 (03) : e004476
  • [19] Comparative study of two Chinese versions of Montreal Cognitive Assessment for Screening of Mild Cognitive Impairment
    Huang, Yu-Yuan
    Qian, Shu-Xia
    Guan, Qiao-Bing
    Chen, Ke-Liang
    Zhao, Qian-Hua
    Lu, Jia-Hong
    Guo, Qi-Hao
    [J]. APPLIED NEUROPSYCHOLOGY-ADULT, 2021, 28 (01) : 88 - 93
  • [20] The Montreal Cognitive Assessment-Basic: A Screening Tool for Mild Cognitive Impairment in Illiterate and Low-Educated Elderly Adults
    Julayanont, Parunyou
    Tangwongchai, Sookjaroen
    Hemrungrojn, Solaphat
    Tunvirachaisakul, Chawit
    Phanthumchinda, Kammant
    Hongsawat, Juntanee
    Suwichanarakul, Panida
    Thanasirorat, Saowaluck
    Nasreddine, Ziad S.
    [J]. JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2015, 63 (12) : 2550 - 2554