Is cardiovascular risk profiling from UK Biobank retinal images using explicit deep learning estimates of traditional risk factors equivalent to actual risk measurements? A prospective cohort study design

被引:1
作者
Qian, Yiming [1 ]
Li, Liangzhi [1 ]
Nakashima, Yuta [1 ]
Nagahara, Hajime [1 ]
Nishida, Kohji [2 ,3 ]
Kawasaki, Ryo [3 ,4 ]
机构
[1] Osaka Univ, Inst Databil Sci, Suita, Japan
[2] Osaka Univ, Med Sch, Dept Ophthalmol, Suita, Japan
[3] Osaka Univ Hosp, Artificial Intelligence Ctr Med Res & Applicat, Suita, Japan
[4] Osaka Univ, Dept Social Med, Publ Hlth, Suita, Japan
关键词
health informatics; biotechnology & bioinformatics; ophthalmology; VESSEL CALIBER; PREDICTION; DISEASE;
D O I
10.1136/bmjopen-2023-078609
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective Despite extensive exploration of potential biomarkers of cardiovascular diseases (CVDs) derived from retinal images, it remains unclear how retinal images contribute to CVD risk profiling and how the results can inform lifestyle modifications. Therefore, we aimed to determine the performance of cardiovascular risk prediction model from retinal images via explicitly estimating 10 traditional CVD risk factors and compared with the model based on actual risk measurements. Design A prospective cohort study design. Setting The UK Biobank (UKBB), a prospective cohort study, following the health conditions including CVD outcomes of adults recruited between 2006 and 2010. Participants A subset of data from the UKBB which contains 52 297 entries with retinal images and 5-year cumulative incidence of major adverse cardiovascular events (MACE) was used. Our dataset is split into 3:1:1 as training set (n=31 403), validation set (n=10 420) and testing set (n=10 474). We developed a deep learning (DL) model to predict 5-year MACE using a two-stage DL neural network. Primary and secondary outcome measures We computed accuracy, area under the receiver operating characteristic curve (AUC) and compared variations in the risk prediction models combining CVD risk factors and retinal images. Results The first-stage DL model demonstrated that the 10 CVD risk factors can be estimated from a given retinal image with an accuracy ranging between 65.2% and 89.8% (overall AUC of 0.738 with 95% CI: 0.710 to 0.766). In MACE prediction, our model outperformed the traditional score-based models, with 8.2% higher AUC than Systematic COronary Risk Evaluation (SCORE), 3.5% for SCORE 2 and 7.1% for the Framingham Risk Score (with p value<0.05 for all three comparisons). Conclusions Our algorithm estimates the 5-year risk of MACE based on retinal images, while explicitly presenting which risk factors should be checked and intervened. This two-stage approach provides human interpretable information between stages, which helps clinicians gain insights into the screening process copiloting with the DL model.
引用
收藏
页数:9
相关论文
共 22 条
[1]   Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants [J].
Alaa, Ahmed M. ;
Bolton, Thomas ;
Di Angelantonio, Emanuele ;
Rudd, James H. F. ;
van der Schaar, Mihaela .
PLOS ONE, 2019, 14 (05)
[2]   A Bayesian information theoretic model of learning to learn via multiple task sampling [J].
Baxter, J .
MACHINE LEARNING, 1997, 28 (01) :7-39
[3]   A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre [J].
Cheung, Carol Y. ;
Xu, Dejiang ;
Cheng, Ching-Yu ;
Sabanayagam, Charumathi ;
Tham, Yih-Chung ;
Yu, Marco ;
Rim, Tyler Hyungtaek ;
Chai, Chew Yian ;
Gopinath, Bamini ;
Mitchell, Paul ;
Poulton, Richie ;
Moffitt, Terrie E. ;
Caspi, Avshalom ;
Yam, Jason C. ;
Tham, Clement C. ;
Jonas, Jost B. ;
Wang, Ya Xing ;
Song, Su Jeong ;
Burrell, Louise M. ;
Farouque, Omar ;
Li, Ling Jun ;
Tan, Gavin ;
Ting, Daniel S. W. ;
Hsu, Wynne ;
Lee, Mong Li ;
Wong, Tien Y. .
NATURE BIOMEDICAL ENGINEERING, 2021, 5 (06) :498-+
[4]   Estimation of ten-year risk of fatal cardiovascular disease in Europe:: the SCORE project [J].
Conroy, RM ;
Pyörälä, K ;
Fitzgerald, AP ;
Sans, S ;
Menotti, A ;
De Backer, G ;
De Bacquer, D ;
Ducimetière, P ;
Jousilahti, P ;
Keil, U ;
Njolstad, I ;
Oganov, RG ;
Thomsen, T ;
Tunstall-Pedoe, H ;
Tverdal, A ;
Wedel, H ;
Whincup, P ;
Wilhelmsen, L ;
Graham, IM .
EUROPEAN HEART JOURNAL, 2003, 24 (11) :987-1003
[5]   Performance of reclassification statistics in comparing risk prediction models [J].
Cook, Nancy R. ;
Paynter, Nina P. .
BIOMETRICAL JOURNAL, 2011, 53 (02) :237-258
[6]   General cardiovascular risk profile for use in primary care - The Framingham Heart Study [J].
D'Agostino, Ralph B. ;
Vasan, Ramachandran S. ;
Pencina, Michael J. ;
Wolf, Philip A. ;
Cobain, Mark ;
Massaro, Joseph M. ;
Kannel, William B. .
CIRCULATION, 2008, 117 (06) :743-753
[7]   SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe [J].
Hageman, Steven ;
Pennells, Lisa ;
Ojeda, Francisco ;
Kaptoge, Stephen ;
Kuulasmaa, Kari ;
de Vries, Tamar ;
Xu, Zhe ;
Kee, Frank ;
Chung, Ryan ;
Wood, Angela ;
McEvoy, John William ;
Veronesi, Giovanni ;
Bolton, Thomas ;
Dendale, Paul ;
Ference, Brian A. ;
Halle, Martin ;
Timmis, Adam ;
Vardas, Panos ;
Danesh, John ;
Graham, Ian ;
Salomaa, Veikko ;
Visseren, Frank ;
De Bacquer, Dirk ;
Blankenberg, Stefan ;
Dorresteijn, Jannick ;
Di Angelantonio, Emanuele ;
Achenbach, Stephan ;
Aleksandrova, Krasimira ;
Amiano, Pilar ;
Amouyel, Philippe ;
Andersson, Jonas ;
Bakker, Stephan J. L. ;
Costa, Rui Bebiano Da Providencia ;
Beulens, Joline W. J. ;
Blaha, Michael ;
Bobak, Martin ;
Boer, Jolanda M. A. ;
Bonet, Catalina ;
Bonnet, Fabrice ;
Boutron-Ruault, Marie-Christine ;
Braaten, Tonje ;
Brenner, Hermann ;
Brunner, Fabian ;
Brunner, Eric J. ;
Brunstrom, Mattias ;
Buring, Julie ;
Butterworth, Adam S. ;
Capkova, Nadezda ;
Cesana, Giancarlo ;
Chrysohoou, Christina .
EUROPEAN HEART JOURNAL, 2021, 42 (25) :2439-2454
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]   Effects of Hypertension, Diabetes, and Smoking on Age and Sex Prediction from Retinal Fundus Images [J].
Kim, Yong Dae ;
Noh, Kyoung Jin ;
Byun, Seong Jun ;
Lee, Soochahn ;
Kim, Tackeun ;
Sunwoo, Leonard ;
Lee, Kyong Joon ;
Kang, Si-Hyuck ;
Park, Kyu Hyung ;
Park, Sang Jun .
SCIENTIFIC REPORTS, 2020, 10 (01)
[10]   Prediction of Incident Stroke Events Based on Retinal Vessel Caliber: A Systematic Review and Individual-Participant Meta-Analysis [J].
McGeechan, Kevin ;
Liew, Gerald ;
Macaskill, Petra ;
Irwig, Les ;
Klein, Ronald ;
Klein, Barbara E. K. ;
Wang, Jie Jin ;
Mitchell, Paul ;
Vingerling, Johannes R. ;
de Jong, Paulus T. V. M. ;
Witteman, Jacqueline C. M. ;
Breteler, Monique M. B. ;
Shaw, Jonathan ;
Zimmet, Paul ;
Wong, Tien Y. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2009, 170 (11) :1323-1332