Microstructure, mechanical properties, and corrosion resistance of L21 phase-strengthened laser cladding CrFeNiTixAl1-x high-entropy alloy coatings

被引:2
|
作者
Xu, Yiku [1 ]
Yan, Kai [1 ]
Wang, Yue [1 ]
Yang, Jing [1 ]
Hua, Rimin [1 ]
Zhao, Qinyang [1 ]
Chen, Yongnan [1 ]
机构
[1] Changan Univ, Sch Mat Sci & Engn, Xian 710064, Peoples R China
关键词
High entropy alloy coatings; L21 phase strengthening; Microstructure; Mechanical property; Corrosion resistance; OXIDATION BEHAVIOR; WEAR; YTTRIUM; AL; TI;
D O I
10.1016/j.jallcom.2024.177162
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, CrFeNiTixAl1-x (x=0.3, 0.7 in mole ratio) high-entropy alloy coatings (referred to as Ti0.3Al0.7, Ti0.7Al0.3 alloy coating, respectively) were prepared on AlSI1045 steel using the laser cladding (LC) method by adjusting the Al and Ti element contents. The phase constitutions, microstructures, mechanical properties, and corrosion resistance of the prepared coatings were comprehensively investigated and compared. Both Ti0.3Al0.7 and Ti0.7Al0.3 coatings exhibited rich Fe-Cr disordered BCC phase (A2) and NiAl ordered BCC phase (B2). The L21 phase in the Ti0.7Al0.3 coating accounted for as much as 47.7% when the Ti content was 0.7. The elevated Ti content significantly refined the internal structure of the coating, reducing the average grain size from 7.495 mu m to 2.281 mu m. With the combined effect of grain refinement and obstruction of dislocation motion by large angle grain boundaries, the microhardness of the Ti0.7Al0.3 alloy coatings increased from 685.12 HV0.2 to 867.20 HV0.2 compared to Ti0.3Al0.7. The precipitation strengthening effect of the noncoherent hard L21 phase, along with the protective role of the TiO2 oxide film, resulted in the lowest friction coefficient of 0.171 for Ti0.7Al0.3. Ti0.7Al0.3 exhibits the dominant wear mechanisms of abrasive and oxidative wear. Meanwhile, these coatings also exhibited excellent resistance to Cl- corrosion, with corrosion potentials shifted to -0.52 V and -0.46 V for Ti0.3Al0.7 and Ti0.7Al0.3, and corrosion current densities decreased to 1.26 x 10-6 A/cm2 and 4.35 x 10- 7A/cm2, respectively. These findings suggest that the replacement of equimolar Al with equimolar Ti in the CrFeNiTiAl high-entropy alloy compositions is a meaningful phenomenon that offers new perspectives for the design of novel high-performance HEAs.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Effects of Mo content on the microstructure and mechanical properties of laser cladded FeCoCrNiMo x (x=0.2, 0.5) high-entropy alloy coatings
    Jin, Junjun
    Chen, Bing
    Zhang, Zhiyi
    Wu, Yibin
    Luo, Zhaoyang
    Gou, Guoqing
    Chen, Wenjing
    SURFACE & COATINGS TECHNOLOGY, 2024, 482
  • [32] Microstructure and Properties of High-Entropy AlxCoCrFe2.7MoNi Alloy Coatings Prepared by Laser Cladding
    Sha, Minghong
    Jia, Chuntang
    Qiao, Jun
    Feng, Wenqiang
    Ai, Xingang
    Jing, Yu-An
    Shen, Minggang
    Li, Shengli
    METALS, 2019, 9 (12)
  • [33] INFLUENCE OF TiC CONTENT ON MICROSTRUCTURE AND PROPERTIES OF AlCoCrFeNi HIGH-ENTROPY ALLOY COATINGS PREPARED BY LASER CLADDING
    LI, Zhaotong
    Jing, Cainian
    Feng, Yan
    Wu, Zhonglin
    Lin, Tao
    Zhao, Jingrui
    Liu, Lei
    SURFACE REVIEW AND LETTERS, 2022, 29 (10)
  • [34] Process Optimization and Corrosion Resistance of Laser Cladding AlCoCrFeNiCu High-entropy Alloy
    Li L.
    Ye H.
    Liu Y.
    Zhang K.
    She H.-Y.
    Qu W.
    Zhang J.-Y.
    Yan Z.-L.
    Surface Technology, 2022, 51 (07): : 388 - 396
  • [35] Microstructure Evolution and Corrosion Resistance of FeCoCrNiMo High-Entropy Alloy Coatings Fabricated via Extremely High⁃Speed Laser Cladding
    Xiao, Hao
    Huang, Jian
    Wang, Peng
    Xu, Peixin
    Xu, Yifei
    Zhang, Dongyue
    Du, Borui
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2025, 52 (04):
  • [36] Influence of WC addition on the microstructure and properties of AlCoCrFeNiCu high-entropy alloy coatings by plasma cladding
    Xie, Yujiang
    Qi, Junjie
    Zhao, Ming
    Jiang, Wenyu
    Wen, Xiong
    Huang, Bensheng
    Zhuang, Jia
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1021
  • [37] Effect of V on microstructure, wear and corrosion properties in AlCoCrMoVX high entropy alloy coatings by laser cladding
    Liao, Tianhai
    Wang, Zonglun
    Wu, Xianghai
    Liu, Qibin
    Guo, Yaxiong
    Ding, Kailu
    Shang, Xiaojuan
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 23 : 4420 - 4431
  • [38] Effect of synergistic variation in Ti and Zr elements on the microstructure and properties of laser cladding AlCoCrFeNi high-entropy alloy coatings
    Ma, Qi
    Zhao, Wei
    Shi, Chuanwei
    Wang, Ming
    Song, Chenxiao
    Zhang, Hui
    Gao, Song
    MATERIALS CHARACTERIZATION, 2023, 205
  • [39] Microstructure and corrosion resistance of laser cladding FeAlCrNiSix high entropy alloy coating
    Yin Y.
    Ru E.
    Liu P.
    Wu Y.
    Song Y.
    Zhang R.
    Xiaohong W.E.I.
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2024, 34 (04): : 1300 - 1307
  • [40] Effect of Cu on microstructure and properties of Co2CrFeNiMnCu x high-entropy alloy coatings prepared by laser cladding
    Hu, Pingjiu
    Zhu, Qingjun
    Peng, Zhongbo
    Duan, Jizhou
    SURFACE ENGINEERING, 2024, 40 (01) : 84 - 99