A dynamic task allocation framework for human-robot collaborative assembly based on digital twin and IGA-TS

被引:0
|
作者
Gao, Zenggui [1 ,2 ]
Tang, Jingwei [1 ]
Lu, Hongjiang [1 ]
Yao, Yuyan [1 ]
Cao, Xinjie [1 ]
Yu, Chunyang [3 ]
Liu, Lilan [1 ,2 ]
机构
[1] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Shanghai Key Lab Intelligent Mfg & Robot, Shanghai 200444, Peoples R China
[3] China Acad Art, Design AI Lab, Hangzhou 310024, Peoples R China
基金
中国国家自然科学基金;
关键词
Human-robot collaborative assembly; Digital twin; Improved genetic algorithm; Dynamic task allocation; Multi-objective optimization; MANUFACTURING SYSTEMS; COMPLEXITY; DESIGN;
D O I
10.1016/j.jmsy.2025.02.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Human-robot collaborative assembly is recognized as an essential component of intelligent manufacturing systems, combining human flexibility with machine efficiency, thereby enhancing the effectiveness and adaptability of assembly tasks. However, challenge in adaptability, decision-making, and responsiveness to changing scenarios persist. To address these, this paper propose a digital twin-driven decision-making approach for task allocation, using an Improved Genetic Algorithm with Tabu Search (IGA-TS). First, an assembly task evaluation model and digital twin framework are developed to support dynamic decision-making. Subsequently, the IGA-TS algorithm integrates a custom encoding scheme, fitness function, tabu list, and neighborhood search to avoid local optima, enhancing global optimization and convergence speed. Lastly, a digital twin-assisted system, combining human body modeling and motion recognition, enables real-time optimization feedback, forming a closed-loop for collaboration. Experimental results show that IGA-TS outperforms traditional genetic algorithms and heuristic methods in multi-objective optimization, reducing assembly time, task complexity, and human workload. In addition, the designed digital twin system demonstrates strong adaptability and robustness in responding to dynamic changes during the assembly process, providing a practical and feasible solution for manufacturing workshop assembly. It significantly enhances production efficiency and product quality, offering substantial industrial application value.
引用
收藏
页码:206 / 223
页数:18
相关论文
共 50 条
  • [1] Digital twin driven human-robot collaborative assembly
    Bilberg, Arne
    Malik, Ali Ahmad
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2019, 68 (01) : 499 - 502
  • [2] Complexity-based task allocation in human-robot collaborative assembly
    Malik, Ali Ahmad
    Bilberg, Arne
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2019, 46 (04): : 471 - 480
  • [3] Task allocation for improved ergonomics in Human-Robot Collaborative Assembly
    El Makrini, Ilias
    Merckaert, Kelly
    De Winter, Joris
    Lefeber, Dirk
    Vanderborght, Bram
    INTERACTION STUDIES, 2019, 20 (01) : 102 - 133
  • [4] Digital Twin-based Design and Operation of Human-Robot Collaborative Assembly
    Wang, Yichen
    Feng, Jindan
    Liu, Jinshan
    Liu, Xiaojun
    Wang, Junfeng
    IFAC PAPERSONLINE, 2022, 55 (02): : 295 - 300
  • [5] A human digital twin approach for fatigue-aware task planning in human-robot collaborative assembly
    You, Yingchao
    Cai, Boliang
    Pham, Duc Truong
    Liu, Ying
    Ji, Ze
    COMPUTERS & INDUSTRIAL ENGINEERING, 2025, 200
  • [6] A transfer reinforcement learning and digital-twin based task allocation method for human-robot collaboration assembly
    Wang, Jingfei
    Yan, Yan
    Hu, Yaoguang
    Yang, Xiaonan
    Zhang, Lixiang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 144
  • [7] Digital Twin for Designing and Reconfiguring Human-Robot Collaborative Assembly Lines
    Kousi, Niki
    Gkournelos, Christos
    Aivaliotis, Sotiris
    Lotsaris, Konstantinos
    Bavelos, Angelos Christos
    Baris, Panagiotis
    Michalos, George
    Makris, Sotiris
    APPLIED SCIENCES-BASEL, 2021, 11 (10):
  • [8] A Hierarchical Human-Robot Interaction-Planning Framework for Task Allocation in Collaborative Industrial Assembly Processes
    Johannsmeier, Lars
    Haddadin, Sami
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (01): : 41 - 48
  • [9] A Hierarchical Finite-State Machine-Based Task Allocation Framework for Human-Robot Collaborative Assembly Tasks
    El Makrini, Ilias
    Omidi, Mohsen
    Fusaro, Fabio
    Lamon, Edoardo
    Ajoudani, Arash
    Vanderborght, Bram
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 10238 - 10244
  • [10] Implementation and Evaluation of Dynamic Task Allocation for Human-Robot Collaboration in Assembly
    Petzoldt, Christoph
    Niermann, Dario
    Maack, Emily
    Sontopski, Marius
    Vur, Burak
    Freitag, Michael
    APPLIED SCIENCES-BASEL, 2022, 12 (24):