INVERSE PROBLEM OF CHAOTIC DYNAMICS OF A POLYMER MOLECULE

被引:0
作者
Starovoitov, Victor n. [1 ]
Titova, Anastasia a. [1 ]
机构
[1] Lavrentyev Inst Hydrodynam, Pr Lavrentyeva 15, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2024年 / 21卷 / 02期
关键词
polymer chain; chaotic dynamics; nonlo cal parabolic equation; inverse problem; solvability; BOUNDARY-VALUE PROBLEM; SOLVABILITY;
D O I
10.33048/semi.2024.21.077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, it is shown that the problem of chaotic dynamics of a polymer molecule in a liquid can be written as a coefficient inverse problem for a nonlocal in time parabolic equation. The weak solvability of this inverse problem is established for the cases of the Dirichlet and Neumann boundary conditions.
引用
收藏
页码:1167 / 1180
页数:14
相关论文
共 9 条
[1]   DETERMINATION OF A PARAMETER P(T) IN SOME QUASI-LINEAR PARABOLIC DIFFERENTIAL-EQUATIONS [J].
CANNON, JR ;
LIN, YP .
INVERSE PROBLEMS, 1988, 4 (01) :35-45
[2]   Parabolic equations with unknown time-dependent coefficients [J].
Kozhanov, A. I. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (06) :956-966
[3]  
Ladyzenskaja O., 1968, LINEAR QUASILINEAR E, V23
[4]  
Prilepko A.I., 2000, Methods for Solving Inverse Problems in Mathematical Physics
[5]   SOLVABILITY OF A REGULARIZED BOUNDARY VALUE PROBLEM ON THE CHAOTIC DYNAMICS OF A POLYMER MOLECULE [J].
Starovoitov, V. N. .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (02) :1597-1604
[6]  
Starovoitov VN, 2021, SIB ELECTRON MATH RE, V18, P1714, DOI [10.33048/semi.2081.18.131, 10.33048/semi.2081.18.13]
[7]   Modeling the dynamics of polymer chains in water solution. Application to sensor design [J].
Starovoitov, V. N. ;
Starovoitova, N. .
ALL-RUSSIAN CONFERENCE WITH INTERNATIONAL PARTICIPATION MODERN PROBLEMS OF CONTINUUM MECHANICS AND EXPLOSION PHYSICS DEDICATED TO THE 60TH ANNIVERSARY OF LAVRENTYEV INSTITUTE OF HYDRODYNAMICS SB RAS, 2017, 894
[8]   Boundary value problem for a global-in-time parabolic equation [J].
Starovoitov, Victor N. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) :1118-1126
[9]   STRONG SOLUTIONS TO A NONLOCAL-IN-TIME SEMILINEAR HEAT EQUATION [J].
Walker, Christoph .
QUARTERLY OF APPLIED MATHEMATICS, 2021, 79 (02) :265-272