Real-to-sim: automatic simulation model generation for a digital twin in semiconductor manufacturing

被引:1
作者
Behrendt, Sebastian [1 ]
Altenmueller, Thomas [2 ]
May, Marvin Carl [1 ]
Kuhnle, Andreas [1 ]
Lanza, Gisela [1 ]
机构
[1] Karlsruhe Inst Technol, Wbk Inst Prod Sci, Kaiserstr 12, D-76131 Karlsruhe, Germany
[2] Infineon Technol AG, Campeon 1-15, D-85579 Neubiberg, Germany
关键词
Digital twin; Machine learning; Automated modeling; Semiconductor manufacturing; Data mining; Simulation; CHALLENGES; SYSTEMS;
D O I
10.1007/s10845-025-02572-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semiconductor manufacturing systems are highly complex due to intricate processes and material flows. Operating these systems efficiently remains a significant challenge, particularly under the growing demands for operational excellence and cost reduction. Current approaches often rely on extensive manual modeling, which slows down production planning and adaptation. To address these challenges, we propose a data-driven methodology for Automatic Simulation Model Generation (ASMG), enhanced by machine learning techniques. This fully automated pipeline extracts and processes production data (lot tracking information and resource states) to generate simulation models without manual intervention. A machine learning technique called equipment emulation captures complex tool behaviors and mitigates issues with noisy or incomplete data. Validation in two real-world semiconductor production environments, covering over 300 days and showing an accuracy within 5-7% for throughput and uptime, demonstrates the method's ability to produce precise models. By reducing the time and expertise required for model creation, this ASMG method facilitates agile digital twin implementations and enables faster, more responsive production planning.
引用
收藏
页数:20
相关论文
共 46 条
[1]   A FULL-FACTORY SIMULATOR AS A DAILY DECISION-SUPPORT TOOL FOR 300MM WAFER FABRICATION PRODUCTIVITY [J].
Bagchi, Sugato ;
Chen-Ritzo, Ching-Hua ;
Shikalgar, Sameer T. ;
Toner, Michael .
2008 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2008, :2021-+
[2]   The impact of the product mix on the value of flexibility [J].
Bengtsson, J ;
Olhager, J .
OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2002, 30 (04) :265-273
[3]  
Bergmann Soren., 2010, P 2010 SUMMER SIMULA, P545
[4]  
Camargo M., 2020, arXiv, DOI [10.48550/arXiv.2009.03567, DOI 10.48550/ARXIV.2009.03567]
[5]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[6]   Data mining in manufacturing: a review based on the kind of knowledge [J].
Choudhary, A. K. ;
Harding, J. A. ;
Tiwari, M. K. .
JOURNAL OF INTELLIGENT MANUFACTURING, 2009, 20 (05) :501-521
[7]   Dynamic production system identification for smart manufacturing systems [J].
Denno, Peter ;
Dickerson, Charles ;
Harding, Jennifer Anne .
JOURNAL OF MANUFACTURING SYSTEMS, 2018, 48 :192-203
[8]  
Dudin AN, 2020, THEORY OF QUEUING SYSTEMS WITH CORRELATED FLOWS, P1, DOI 10.1007/978-3-030-32072-0
[9]  
Eckardt F., 2002, Ein beitrag zu theorie und praxis datengetriebener modellgeneratoren zur simulation von produktionssystemen
[10]  
Farsi Maryam, 2020, Digital Twin Technologies and Smart Cities, DOI [10.1007/978-3-030-18732-3, DOI 10.1007/978-3-030-18732-3]